Spaces:
Running
on
Zero
Running
on
Zero
Nithya
commited on
Commit
β’
3d6b478
1
Parent(s):
0821a2f
updated the models
Browse files- .gitattributes +2 -0
- app.py +30 -14
- models/diffusion_pitch/{last.ckpt β model.ckpt} +0 -0
- models/transformer_pitch/config.gin +61 -0
- models/transformer_pitch/model.ckpt +3 -0
- requirements.txt +1 -1
.gitattributes
CHANGED
@@ -5,3 +5,5 @@ models/pitch_to_audio/last.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
5 |
models/diffusion_pitch/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
6 |
models/pitch_to_audio/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
7 |
examples/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
5 |
models/diffusion_pitch/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
6 |
models/pitch_to_audio/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
7 |
examples/** filter=lfs diff=lfs merge=lfs -text
|
8 |
+
models/diffusion_pitch/model.ckpt filter=lfs diff=lfs merge=lfs -text
|
9 |
+
models/transformer_pitch/model.ckpt filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -41,7 +41,10 @@ from gamadhani.utils.utils import get_device
|
|
41 |
import copy
|
42 |
|
43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', force=True)
|
44 |
-
pitch_paths = {
|
|
|
|
|
|
|
45 |
model_loaded = None
|
46 |
audio_path = 'models/pitch_to_audio/'
|
47 |
device = get_device()
|
@@ -110,10 +113,13 @@ def generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples, nu
|
|
110 |
|
111 |
return samples, inverted_pitches
|
112 |
|
113 |
-
def generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples, num_steps):
|
114 |
'''Generate pitch values for the call and response task'''
|
115 |
pitch = pitch[:, :, -400:] # consider only the last 4 s of the pitch contour
|
116 |
-
|
|
|
|
|
|
|
117 |
inverted_pitches = invert_pitch_fn(f0=samples.clone().detach().cpu().numpy()[0]).flatten() # pitch values in Hz
|
118 |
|
119 |
return samples, inverted_pitches
|
@@ -127,7 +133,7 @@ def generate_audio(audio_model, f0s, invert_audio_fn, singers=[3], num_steps=100
|
|
127 |
return audio
|
128 |
|
129 |
@spaces.GPU(duration=30)
|
130 |
-
def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp', audio_seq_len=750, pitch_qt=None, type='response', invert_pitch_fn=None, t0=0.5):
|
131 |
global pitch_model, audio_model
|
132 |
# move the models to device
|
133 |
pitch_model = pitch_model.to(device)
|
@@ -135,10 +141,11 @@ def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp',
|
|
135 |
logging.log(logging.INFO, 'Generate function')
|
136 |
# load pitch values onto GPU
|
137 |
pitch = torch.tensor(pitch).float().unsqueeze(0).unsqueeze(0).to(device)
|
138 |
-
pitch_qt
|
|
|
139 |
logging.log(logging.INFO, 'Generating pitch')
|
140 |
if type == 'response':
|
141 |
-
pitch, inverted_pitch = generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100)
|
142 |
elif type == 'reinterp':
|
143 |
pitch, inverted_pitch = generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, t0=t0)
|
144 |
|
@@ -151,9 +158,10 @@ def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp',
|
|
151 |
pitch= pitch_qt.inverse_transform(x).squeeze(0) # qt transform expects shape (bs, seq_len, 1)
|
152 |
pitch = torch.round(pitch) # round to nearest integer, done in preprocessing of pitch contour fed into model
|
153 |
pitch[pitch < 200] = np.nan
|
|
|
154 |
return pitch
|
155 |
pitch = undo_qt(pitch)
|
156 |
-
interpolated_pitch = p2a.interpolate_pitch(pitch=pitch
|
157 |
interpolated_pitch = torch.nan_to_num(interpolated_pitch, nan=196) # replace nan values with silent token
|
158 |
interpolated_pitch = interpolated_pitch.squeeze(1) # to match input size by removing the extra dimension
|
159 |
logging.log(logging.INFO, 'Generating audio')
|
@@ -178,12 +186,12 @@ audio_model, audio_qt, audio_seq_len, invert_audio_fn = load_audio_fns(
|
|
178 |
|
179 |
def load_pitch_model(model_selection):
|
180 |
global device
|
181 |
-
pitch_path = pitch_paths[model_selection]
|
182 |
pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn, _ = load_pitch_fns(
|
183 |
-
os.path.join(pitch_path, '
|
184 |
-
model_type =
|
185 |
config_path = os.path.join(pitch_path, 'config.gin'), \
|
186 |
-
qt_path = os.path.join(pitch_path, 'qt.joblib'), \
|
187 |
device = 'cpu'
|
188 |
)
|
189 |
return pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn
|
@@ -239,9 +247,9 @@ def container_generate(model_selection, task_selection, audio, singer_id, t0):
|
|
239 |
elif singer_id == 'Singer 2':
|
240 |
singer = [27]
|
241 |
if task_selection == 'Call and Response':
|
242 |
-
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='response', invert_pitch_fn=invert_pitch_fn)
|
243 |
else:
|
244 |
-
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='reinterp', invert_pitch_fn=invert_pitch_fn, t0=t0)
|
245 |
audio, output_plot = partial_generate(f0)
|
246 |
return audio, user_input_plot, output_plot
|
247 |
|
@@ -260,6 +268,13 @@ def toggle_visibility(selection):
|
|
260 |
return gr.update(visible=True)
|
261 |
else:
|
262 |
return gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
with gr.Blocks(css=css) as demo:
|
265 |
gr.Markdown("# GaMaDHaNi: Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music", elem_classes="center-text")
|
@@ -291,8 +306,9 @@ with gr.Blocks(css=css) as demo:
|
|
291 |
gr.Markdown("""
|
292 |
*Last note, I promise: There are some example audio samples at the bottom of the page. You can start with those if you'd like!*
|
293 |
""")
|
294 |
-
model_dropdown = gr.Dropdown(["Diffusion Pitch Generator"], label="Select a model type")
|
295 |
task_dropdown = gr.Dropdown(label="Select a task", choices=["Call and Response", "Melodic Reinterpretation"])
|
|
|
296 |
t0 = gr.Slider(label="Faithfulness to the input (For melodic reinterpretation task only)", minimum=0.0, maximum=1.0, step=0.01, value=0.3, visible=False)
|
297 |
task_dropdown.change(toggle_visibility, inputs=task_dropdown, outputs=t0)
|
298 |
singer_dropdown = gr.Dropdown(label="Select a singer", choices=["Singer 1", "Singer 2"])
|
|
|
41 |
import copy
|
42 |
|
43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', force=True)
|
44 |
+
pitch_paths = {
|
45 |
+
'Diffusion Pitch Generator': ('diffusion', 'models/diffusion_pitch/'),
|
46 |
+
'Autoregressive Pitch Generator': ('transformer', 'models/transformer_pitch/')
|
47 |
+
}
|
48 |
model_loaded = None
|
49 |
audio_path = 'models/pitch_to_audio/'
|
50 |
device = get_device()
|
|
|
113 |
|
114 |
return samples, inverted_pitches
|
115 |
|
116 |
+
def generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples, num_steps, model_type='diffusion'):
|
117 |
'''Generate pitch values for the call and response task'''
|
118 |
pitch = pitch[:, :, -400:] # consider only the last 4 s of the pitch contour
|
119 |
+
if model_type == 'diffusion':
|
120 |
+
samples = pitch_model.sample_fn(num_samples, num_steps, prime=pitch)
|
121 |
+
else:
|
122 |
+
samples = pitch_model.sample_fn(batch_size=num_samples, seq_len=800, prime=pitch)
|
123 |
inverted_pitches = invert_pitch_fn(f0=samples.clone().detach().cpu().numpy()[0]).flatten() # pitch values in Hz
|
124 |
|
125 |
return samples, inverted_pitches
|
|
|
133 |
return audio
|
134 |
|
135 |
@spaces.GPU(duration=30)
|
136 |
+
def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp', audio_seq_len=750, pitch_qt=None, type='response', invert_pitch_fn=None, t0=0.5, model_type='diffusion'):
|
137 |
global pitch_model, audio_model
|
138 |
# move the models to device
|
139 |
pitch_model = pitch_model.to(device)
|
|
|
141 |
logging.log(logging.INFO, 'Generate function')
|
142 |
# load pitch values onto GPU
|
143 |
pitch = torch.tensor(pitch).float().unsqueeze(0).unsqueeze(0).to(device)
|
144 |
+
if pitch_qt is not None:
|
145 |
+
pitch_qt = p2a.GPUQuantileTransformer(pitch_qt, device=device)
|
146 |
logging.log(logging.INFO, 'Generating pitch')
|
147 |
if type == 'response':
|
148 |
+
pitch, inverted_pitch = generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, model_type=model_type)
|
149 |
elif type == 'reinterp':
|
150 |
pitch, inverted_pitch = generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, t0=t0)
|
151 |
|
|
|
158 |
pitch= pitch_qt.inverse_transform(x).squeeze(0) # qt transform expects shape (bs, seq_len, 1)
|
159 |
pitch = torch.round(pitch) # round to nearest integer, done in preprocessing of pitch contour fed into model
|
160 |
pitch[pitch < 200] = np.nan
|
161 |
+
pitch = pitch.unsqueeze(0)
|
162 |
return pitch
|
163 |
pitch = undo_qt(pitch)
|
164 |
+
interpolated_pitch = p2a.interpolate_pitch(pitch=pitch, audio_seq_len=audio_seq_len).squeeze(0) # interpolate pitch values to match the audio model's input size
|
165 |
interpolated_pitch = torch.nan_to_num(interpolated_pitch, nan=196) # replace nan values with silent token
|
166 |
interpolated_pitch = interpolated_pitch.squeeze(1) # to match input size by removing the extra dimension
|
167 |
logging.log(logging.INFO, 'Generating audio')
|
|
|
186 |
|
187 |
def load_pitch_model(model_selection):
|
188 |
global device
|
189 |
+
model_type, pitch_path = pitch_paths[model_selection]
|
190 |
pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn, _ = load_pitch_fns(
|
191 |
+
os.path.join(pitch_path, 'model.ckpt'), \
|
192 |
+
model_type = model_type, \
|
193 |
config_path = os.path.join(pitch_path, 'config.gin'), \
|
194 |
+
qt_path = os.path.join(pitch_path, 'qt.joblib') if model_type == 'diffusion' else None, \
|
195 |
device = 'cpu'
|
196 |
)
|
197 |
return pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn
|
|
|
247 |
elif singer_id == 'Singer 2':
|
248 |
singer = [27]
|
249 |
if task_selection == 'Call and Response':
|
250 |
+
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='response', invert_pitch_fn=invert_pitch_fn, model_type=model_selection)
|
251 |
else:
|
252 |
+
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='reinterp', invert_pitch_fn=invert_pitch_fn, t0=t0, model_type=model_selection)
|
253 |
audio, output_plot = partial_generate(f0)
|
254 |
return audio, user_input_plot, output_plot
|
255 |
|
|
|
268 |
return gr.update(visible=True)
|
269 |
else:
|
270 |
return gr.update(visible=False)
|
271 |
+
|
272 |
+
def toggle_options(selection, options = ['Call and Response', 'Melodic Reinterpretation']):
|
273 |
+
# Show element if selection is "Show", otherwise hide it
|
274 |
+
if selection == "Melodic Reinterpretation":
|
275 |
+
return gr.update(choices=options)
|
276 |
+
else:
|
277 |
+
return gr.update(choices=options[:-1])
|
278 |
|
279 |
with gr.Blocks(css=css) as demo:
|
280 |
gr.Markdown("# GaMaDHaNi: Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music", elem_classes="center-text")
|
|
|
306 |
gr.Markdown("""
|
307 |
*Last note, I promise: There are some example audio samples at the bottom of the page. You can start with those if you'd like!*
|
308 |
""")
|
309 |
+
model_dropdown = gr.Dropdown(["Diffusion Pitch Generator", "Autoregressive Pitch Generator"], label="Select a model type")
|
310 |
task_dropdown = gr.Dropdown(label="Select a task", choices=["Call and Response", "Melodic Reinterpretation"])
|
311 |
+
model_dropdown.change(toggle_options, outputs=task_dropdown)
|
312 |
t0 = gr.Slider(label="Faithfulness to the input (For melodic reinterpretation task only)", minimum=0.0, maximum=1.0, step=0.01, value=0.3, visible=False)
|
313 |
task_dropdown.change(toggle_visibility, inputs=task_dropdown, outputs=t0)
|
314 |
singer_dropdown = gr.Dropdown(label="Select a singer", choices=["Singer 1", "Singer 2"])
|
models/diffusion_pitch/{last.ckpt β model.ckpt}
RENAMED
File without changes
|
models/transformer_pitch/config.gin
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __gin__ import dynamic_registration
|
2 |
+
from gamadhani import src
|
3 |
+
from gamadhani.src import dataset
|
4 |
+
from gamadhani.src import model_transformer
|
5 |
+
from gamadhani.src import task_functions
|
6 |
+
from gamadhani.utils import utils
|
7 |
+
import torch.optim
|
8 |
+
|
9 |
+
MODEL_DIM = 512
|
10 |
+
EMB_DIM = 512
|
11 |
+
NUM_TOKENS = 7928
|
12 |
+
NUM_QUANTIZERS = 1
|
13 |
+
DROPOUT_RATE = 0.3
|
14 |
+
NUM_HEADS = 8
|
15 |
+
SEQ_LEN = 1200
|
16 |
+
HEAD_DIM = 32
|
17 |
+
NUM_LAYERS = 8
|
18 |
+
LR = 1e-3
|
19 |
+
|
20 |
+
model_transformer.XTransformerPrior:
|
21 |
+
num_tokens = %NUM_TOKENS
|
22 |
+
seq_len = %SEQ_LEN
|
23 |
+
model_dim = %MODEL_DIM
|
24 |
+
emb_dim = %EMB_DIM
|
25 |
+
head_dim = %HEAD_DIM
|
26 |
+
num_layers = %NUM_LAYERS
|
27 |
+
num_heads = %NUM_HEADS
|
28 |
+
dropout_rate = %DROPOUT_RATE
|
29 |
+
|
30 |
+
|
31 |
+
src.dataset.Task:
|
32 |
+
read_fn = @src.task_functions.pitch_read_downsample
|
33 |
+
invert_fn = @src.task_functions.invert_pitch_read_downsample
|
34 |
+
kwargs = {"seq_len": %SEQ_LEN,
|
35 |
+
"decoder_key": "pitch",
|
36 |
+
"min_norm_pitch": -4915,
|
37 |
+
"time_downsample": 2,
|
38 |
+
"pitch_downsample": 10,
|
39 |
+
"base_tonic": 440.}
|
40 |
+
|
41 |
+
src.dataset.SequenceDataset:
|
42 |
+
task = @dataset.Task()
|
43 |
+
apply_transform = False
|
44 |
+
|
45 |
+
model_transformer.XTransformerPrior.configure_optimizers:
|
46 |
+
optimizer_cls = @torch.optim.AdamW
|
47 |
+
scheduler_cls = @utils.build_warmed_exponential_lr_scheduler
|
48 |
+
|
49 |
+
utils.build_warmed_exponential_lr_scheduler:
|
50 |
+
start_factor = .01
|
51 |
+
peak_iteration = 10000
|
52 |
+
cycle_length = 394600
|
53 |
+
eta_min = 0.1
|
54 |
+
eta_max = %LR
|
55 |
+
|
56 |
+
utils.set_seed:
|
57 |
+
seed = 2023
|
58 |
+
|
59 |
+
torch.optim.AdamW:
|
60 |
+
lr = %LR
|
61 |
+
betas = (.9, .98)
|
models/transformer_pitch/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d849eaca79a0bc390d0550b8187d47a843bdb3a6c81b9401e5e925ae1220acc4
|
3 |
+
size 356915980
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
crepe==0.0.15
|
2 |
hmmlearn==0.3.2
|
3 |
tensorflow==2.17.0
|
4 |
-
GaMaDHaNi @ git+https://github.com/snnithya/GaMaDHaNi.git@
|
|
|
1 |
crepe==0.0.15
|
2 |
hmmlearn==0.3.2
|
3 |
tensorflow==2.17.0
|
4 |
+
GaMaDHaNi @ git+https://github.com/snnithya/GaMaDHaNi.git@055df71380e0feced7e409470ffc8603f1cfa926
|