Spaces:
Sleeping
Sleeping
Commit
ยท
498ff0a
1
Parent(s):
4c2695f
update demo(before postprocessing
Browse files- app.py +142 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import streamlit as st
|
7 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
8 |
+
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="NER ๊ธฐ๋ฐ ๋ฏผ๊ฐ์ ๋ณด ์๋ณ", layout="wide", initial_sidebar_state="expanded"
|
11 |
+
)
|
12 |
+
|
13 |
+
@st.cache
|
14 |
+
def load_model(model_name):
|
15 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
16 |
+
return model
|
17 |
+
|
18 |
+
|
19 |
+
st.title("๐ NER ๊ธฐ๋ฐ ๋ฏผ๊ฐ์ ๋ณด ์๋ณ๊ธฐ")
|
20 |
+
st.write("๋ฌธ์ฅ์ ์
๋ ฅํ์๊ณ , CTRL+Enter(CMD+Enter)๋ฅผ ๋๋ฅด์ธ์ ๐ค")
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base")
|
23 |
+
model = load_model("QuoQA-NLP/konec-privacy")
|
24 |
+
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
|
28 |
+
default_value = "์ฑ์ฑ๋, ๋น๋จ ๊ฒ์ฌํ ๊ฑฐ ๊ฒฐ๊ณผ ๋์ค์
จ์ด์."
|
29 |
+
|
30 |
+
src_text = st.text_area(
|
31 |
+
"๊ฒ์ฌํ๊ณ ์ถ์ ๋ฌธ์ฅ์ ์
๋ ฅํ์ธ์.",
|
32 |
+
default_value,
|
33 |
+
height=300,
|
34 |
+
max_chars=150,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def yield_df(default_value):
|
39 |
+
tokenized = tokenizer.encode(default_value)
|
40 |
+
print(tokenized)
|
41 |
+
|
42 |
+
output = model(input_ids=torch.tensor([tokenized]))
|
43 |
+
logits = output.logits
|
44 |
+
print(logits.size())
|
45 |
+
|
46 |
+
# get prediction for each tokens for 17 classes
|
47 |
+
pred = logits.argmax(-1).squeeze().numpy()
|
48 |
+
print(pred)
|
49 |
+
|
50 |
+
class_map = {
|
51 |
+
"B-ADD": 0,
|
52 |
+
"I-ADD": 1,
|
53 |
+
"B-DN": 2,
|
54 |
+
"I-DN": 3,
|
55 |
+
"B-DT": 4,
|
56 |
+
"I-DT": 5,
|
57 |
+
"B-LC": 6,
|
58 |
+
"I-LC": 7,
|
59 |
+
"B-OG": 8,
|
60 |
+
"I-OG": 9,
|
61 |
+
"B-PS": 10,
|
62 |
+
"I-PS": 11,
|
63 |
+
"B-QT": 12,
|
64 |
+
"I-QT": 13,
|
65 |
+
"B-RL": 14,
|
66 |
+
"I-RL": 15,
|
67 |
+
"O": 16
|
68 |
+
}
|
69 |
+
|
70 |
+
class_map_inverted = {v: k for k, v in class_map.items()}
|
71 |
+
|
72 |
+
# decode prediction
|
73 |
+
class_decoded = [class_map_inverted[p] for p in pred]
|
74 |
+
print(class_decoded)
|
75 |
+
|
76 |
+
label_map = {
|
77 |
+
"ADD": 0,
|
78 |
+
"DN": "์งํ ์ ๋ณด",
|
79 |
+
"DT": "๋ ์ง ์ ๋ณด",
|
80 |
+
"LC": "์ฃผ์ ์ ๋ณด(์ง์ญ, ์ด๋ฉ์ผ ์ฃผ์ ๋ฑ)",
|
81 |
+
"OG": "๊ธฐ๊ด ์ ๋ณด",
|
82 |
+
"PS": "์ธ๋ช
/๋ณ๋ช
์ ๋ณด",
|
83 |
+
"QT": "์๋ ์ ๋ณด",
|
84 |
+
"RL": "๊ด๊ณ ์ ๋ณด",
|
85 |
+
"O": "๋น๋ฏผ๊ฐ ์ ๋ณด"
|
86 |
+
}
|
87 |
+
|
88 |
+
# pair tokens with prediction
|
89 |
+
tokenized_text = tokenizer.convert_ids_to_tokens(tokenized)
|
90 |
+
list_result = []
|
91 |
+
for token, pred in zip(tokenized_text, class_decoded):
|
92 |
+
splitted_pred = pred.split("-")
|
93 |
+
pred_class = splitted_pred[-1]
|
94 |
+
label = label_map[pred_class]
|
95 |
+
# print with 10 characters with spaces divided with |
|
96 |
+
result = {"ํํ์":token, "์์ ๋ผ๋ฒจ":label}
|
97 |
+
list_result.append(result)
|
98 |
+
|
99 |
+
df = pd.DataFrame(list_result)
|
100 |
+
# remove first and last row
|
101 |
+
df = df.iloc[1:-1]
|
102 |
+
st.table(df)
|
103 |
+
return df
|
104 |
+
|
105 |
+
def convert_df(df:pd.DataFrame):
|
106 |
+
return df.to_csv(index=False).encode('utf-8')
|
107 |
+
|
108 |
+
def convert_json(df:pd.DataFrame):
|
109 |
+
result = df.to_json(orient="index")
|
110 |
+
parsed = json.loads(result)
|
111 |
+
json_string = json.dumps(parsed)
|
112 |
+
#st.json(json_string, expanded=True)
|
113 |
+
return json_string
|
114 |
+
|
115 |
+
|
116 |
+
if src_text == "":
|
117 |
+
st.warning("Please **enter text** for translation")
|
118 |
+
else:
|
119 |
+
st.markdown("### ๋ถ๋ฅ๋ ๋จ์ด๋ค")
|
120 |
+
st.header("")
|
121 |
+
cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
122 |
+
|
123 |
+
df_result = yield_df(src_text)
|
124 |
+
|
125 |
+
with c1:
|
126 |
+
#csvbutton = download_button(results, "results.csv", "๐ฅ Download .csv")
|
127 |
+
csvbutton = st.download_button(label="๐ฅ csv๋ก ๋ค์ด๋ก๋", data=convert_df(df_result), file_name= "results.csv", mime='text/csv', key='csv')
|
128 |
+
with c2:
|
129 |
+
#textbutton = download_button(results, "results.txt", "๐ฅ Download .txt")
|
130 |
+
textbutton = st.download_button(label="๐ฅ txt๋ก ๋ค์ด๋ก๋", data=convert_df(df_result), file_name= "results.text", mime='text/plain', key='text')
|
131 |
+
with c3:
|
132 |
+
#jsonbutton = download_button(results, "results.json", "๐ฅ Download .json")
|
133 |
+
jsonbutton = st.download_button(label="๐ฅ json์ผ๋ก ๋ค์ด๋ก๋", data=convert_json(df_result), file_name= "results.json", mime='application/json', key='json')
|
134 |
+
|
135 |
+
with st.expander("(์ฃผ) ์ฟผ์นด์์ด์์ด ๋ฐ๋ชจ ์ฌ์ฌ ๊ด๋ จ", expanded=True):
|
136 |
+
|
137 |
+
st.write(
|
138 |
+
"""
|
139 |
+
ํด๋น ๋ฐ๋ชจ๋ 2022๋
๋ ๊ณผํ๊ธฐ์ ์ ๋ณดํต์ ๋ถ์ ์ฌ์์ผ๋ก ์ ๋ณดํต์ ์ฐ์
์งํฅ์์ ์ง์์ ๋ฐ์ ์ํ๋ ์ฐ๊ตฌ์
|
140 |
+
(๊ณผ์ ๋ฒํธ: A1504-22-1005)
|
141 |
+
"""
|
142 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
streamlit
|
3 |
+
torch
|
4 |
+
pandas
|
5 |
+
numpy
|