my_summarizer / app.py
soarhigh's picture
Create app.py
ee9b596
raw
history blame contribute delete
914 Bytes
import gradio as gr
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
model_name = "ainize/kobart-news"
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def summ(txt):
input_ids = tokenizer.encode(txt, return_tensors="pt")
summary_text_ids = model.generate(
input_ids=input_ids,
bos_token_id=model.config.bos_token_id, # BOS๋Š” Beginning Of Sentence
eos_token_id=model.config.eos_token_id, # EOS๋Š” End Of Sentence
length_penalty=2.0, # ์š”์•ฝ์„ ์–ผ๋งˆ๋‚˜ ์งง๊ฒŒ ํ• ์ง€
max_length=142,
min_length=56,
num_beams=4) # beam search
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
interface = gr.Interface(summ,
[gr.Textbox(label="original text")],
[gr.Textbox(label="summary")])
interface.launch()