|
import time |
|
import wavmark |
|
import streamlit as st |
|
import os |
|
import torch |
|
import datetime |
|
import numpy as np |
|
import soundfile |
|
from wavmark.utils import file_reader |
|
import subprocess |
|
import sys |
|
import time |
|
|
|
|
|
|
|
def my_read_file(audio_path, max_second): |
|
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr) |
|
if audio_length_second > max_second: |
|
signal = signal[0:default_sr * max_second] |
|
audio_length_second = max_second |
|
|
|
return signal, sr, audio_length_second |
|
|
|
|
|
def add_watermark(audio_path, watermark_text): |
|
|
|
assert len(watermark_text) == 16 |
|
watermark_npy = np.array([int(i) for i in watermark_text]) |
|
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode) |
|
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False) |
|
|
|
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav" |
|
tmp_file_path = '/tmp/' + tmp_file_name |
|
soundfile.write(tmp_file_path, watermarked_signal, sr) |
|
|
|
return tmp_file_path |
|
|
|
|
|
|
|
def decode_watermark(audio_path): |
|
assert os.path.exists(audio_path) |
|
|
|
|
|
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode) |
|
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False) |
|
|
|
|
|
if payload_decoded is None: |
|
|
|
return "No Watermark" |
|
|
|
payload_decoded_str = "".join([str(i) for i in payload_decoded]) |
|
st.write("Result:", payload_decoded_str) |
|
|
|
|
|
|
|
def create_default_value(): |
|
if "def_value" not in st.session_state: |
|
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) |
|
def_val_str = "".join([str(i) for i in def_val_npy]) |
|
st.session_state.def_value = def_val_str |
|
|
|
|
|
|
|
def main(): |
|
create_default_value() |
|
|
|
st.title("AudioWaterMarking") |
|
markdown_text = """ |
|
# Audio WaterMarking |
|
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. |
|
|
|
See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details. |
|
""" |
|
|
|
st.markdown(markdown_text) |
|
|
|
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False) |
|
|
|
if audio_file: |
|
|
|
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) |
|
with open(tmp_input_audio_file, "wb") as f: |
|
f.write(audio_file.getbuffer()) |
|
|
|
|
|
|
|
|
|
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"]) |
|
|
|
if action == "Add Watermark": |
|
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) |
|
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") |
|
if add_watermark_button: |
|
if audio_file and watermark_text: |
|
with st.spinner("Adding Watermark..."): |
|
|
|
watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text) |
|
st.write("Watermarked Audio:") |
|
print("watermarked_audio:", watermarked_audio) |
|
st.audio(watermarked_audio, format="audio/wav") |
|
|
|
|
|
elif action == "Decode Watermark": |
|
if st.button("Decode"): |
|
with st.spinner("Decoding..."): |
|
decode_watermark(tmp_input_audio_file) |
|
|
|
|
|
if __name__ == "__main__": |
|
default_sr = 16000 |
|
max_second_encode = 60 |
|
max_second_decode = 30 |
|
len_start_bit = 16 |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
model = wavmark.load_model().to(device) |
|
main() |
|
|
|
|