Spaces:
Runtime error
Runtime error
yjernite
commited on
Commit
·
138a816
1
Parent(s):
deadd68
remove extraneous model selection
Browse files
app.py
CHANGED
@@ -14,14 +14,22 @@ TITLE = "Diffusion Professions Cluster Explorer"
|
|
14 |
professions_dset = load_from_disk("professions")
|
15 |
professions_df = professions_dset.to_pandas()
|
16 |
|
|
|
17 |
def get_image(model, fname):
|
18 |
-
return professions_dset.select(
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
clusters_dicts = dict(
|
21 |
(num_cl, json.load(open(f"clusters/professions_to_clusters_{num_cl}.json")))
|
22 |
for num_cl in [12, 24, 48]
|
23 |
)
|
24 |
|
|
|
|
|
25 |
prompts = pd.read_csv("promptsadjectives.csv")
|
26 |
professions = list(sorted([p.lower() for p in prompts["Occupation-Noun"].tolist()]))
|
27 |
models = {
|
@@ -60,6 +68,17 @@ def describe_cluster(num_clusters, block="label"):
|
|
60 |
|
61 |
|
62 |
def make_profession_plot(num_clusters, prof_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
pre_pandas = dict(
|
64 |
[
|
65 |
(
|
@@ -71,14 +90,7 @@ def make_profession_plot(num_clusters, prof_name):
|
|
71 |
"cluster_proportions"
|
72 |
][k],
|
73 |
)
|
74 |
-
for k,
|
75 |
-
clusters_dicts[num_clusters]["All"][prof_name][
|
76 |
-
"cluster_proportions"
|
77 |
-
].items(),
|
78 |
-
key=lambda x: x[1],
|
79 |
-
reverse=True,
|
80 |
-
)
|
81 |
-
if v > 0
|
82 |
),
|
83 |
)
|
84 |
for mod_name in models
|
@@ -86,7 +98,9 @@ def make_profession_plot(num_clusters, prof_name):
|
|
86 |
)
|
87 |
df = pd.DataFrame.from_dict(pre_pandas)
|
88 |
prof_plot = df.plot(kind="bar", barmode="group")
|
89 |
-
return prof_plot
|
|
|
|
|
90 |
|
91 |
|
92 |
def make_profession_table(num_clusters, prof_names, mod_name, max_cols=8):
|
@@ -145,12 +159,12 @@ def make_profession_table(num_clusters, prof_names, mod_name, max_cols=8):
|
|
145 |
)
|
146 |
|
147 |
|
148 |
-
def show_examplars(num_clusters, prof_name,
|
149 |
-
examplars_dict = clusters_dicts[num_clusters][
|
150 |
"cluster_examplars"
|
151 |
][str(cl_id)]
|
152 |
l = list(chain(*[examplars_dict[k] for k in examplars_dict]))
|
153 |
-
return [get_image(model,fname) for _,model,fname in l]
|
154 |
|
155 |
|
156 |
with gr.Blocks(title=TITLE) as demo:
|
@@ -222,17 +236,6 @@ with gr.Blocks(title=TITLE) as demo:
|
|
222 |
gr.Markdown(
|
223 |
"You can show examples of profession images assigned to each cluster:"
|
224 |
)
|
225 |
-
model_choices_focus = gr.Dropdown(
|
226 |
-
[
|
227 |
-
"All Models",
|
228 |
-
"Stable Diffusion 1.4",
|
229 |
-
"Stable Diffusion 2",
|
230 |
-
"Dall-E 2",
|
231 |
-
],
|
232 |
-
value="All Models",
|
233 |
-
label="Select generation model:",
|
234 |
-
interactive=True,
|
235 |
-
)
|
236 |
cluster_id_focus = gr.Dropdown(
|
237 |
choices=[i for i in range(num_clusters_focus.value)],
|
238 |
value=0,
|
@@ -245,38 +248,36 @@ with gr.Blocks(title=TITLE) as demo:
|
|
245 |
demo.load(
|
246 |
make_profession_plot,
|
247 |
[num_clusters_focus, profession_choice_focus],
|
248 |
-
plot,
|
249 |
queue=False,
|
250 |
)
|
251 |
for var in [num_clusters_focus, profession_choice_focus]:
|
252 |
var.change(
|
253 |
make_profession_plot,
|
254 |
[num_clusters_focus, profession_choice_focus],
|
255 |
-
plot,
|
256 |
queue=False,
|
257 |
)
|
258 |
with gr.Row():
|
259 |
-
examplars_plot = (
|
260 |
-
|
261 |
-
)
|
262 |
demo.load(
|
263 |
show_examplars,
|
264 |
[
|
265 |
num_clusters_focus,
|
266 |
profession_choice_focus,
|
267 |
-
model_choices_focus,
|
268 |
cluster_id_focus,
|
269 |
],
|
270 |
examplars_plot,
|
271 |
queue=False,
|
272 |
)
|
273 |
-
for var in [
|
274 |
var.change(
|
275 |
show_examplars,
|
276 |
[
|
277 |
num_clusters_focus,
|
278 |
profession_choice_focus,
|
279 |
-
model_choices_focus,
|
280 |
cluster_id_focus,
|
281 |
],
|
282 |
examplars_plot,
|
|
|
14 |
professions_dset = load_from_disk("professions")
|
15 |
professions_df = professions_dset.to_pandas()
|
16 |
|
17 |
+
|
18 |
def get_image(model, fname):
|
19 |
+
return professions_dset.select(
|
20 |
+
professions_df[
|
21 |
+
(professions_df["image_path"] == fname) & (professions_df["model"] == model)
|
22 |
+
].index
|
23 |
+
)["image"][0]
|
24 |
+
|
25 |
|
26 |
clusters_dicts = dict(
|
27 |
(num_cl, json.load(open(f"clusters/professions_to_clusters_{num_cl}.json")))
|
28 |
for num_cl in [12, 24, 48]
|
29 |
)
|
30 |
|
31 |
+
cluster_summaries_by_size = json.load(open("clusters/cluster_summaries_by_size.json"))
|
32 |
+
|
33 |
prompts = pd.read_csv("promptsadjectives.csv")
|
34 |
professions = list(sorted([p.lower() for p in prompts["Occupation-Noun"].tolist()]))
|
35 |
models = {
|
|
|
68 |
|
69 |
|
70 |
def make_profession_plot(num_clusters, prof_name):
|
71 |
+
sorted_cl_scores = [
|
72 |
+
(k, v)
|
73 |
+
for k, v in sorted(
|
74 |
+
clusters_dicts[num_clusters]["All"][prof_name][
|
75 |
+
"cluster_proportions"
|
76 |
+
].items(),
|
77 |
+
key=lambda x: x[1],
|
78 |
+
reverse=True,
|
79 |
+
)
|
80 |
+
if v > 0
|
81 |
+
]
|
82 |
pre_pandas = dict(
|
83 |
[
|
84 |
(
|
|
|
90 |
"cluster_proportions"
|
91 |
][k],
|
92 |
)
|
93 |
+
for k, _ in sorted_cl_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
),
|
95 |
)
|
96 |
for mod_name in models
|
|
|
98 |
)
|
99 |
df = pd.DataFrame.from_dict(pre_pandas)
|
100 |
prof_plot = df.plot(kind="bar", barmode="group")
|
101 |
+
return prof_plot, gr.update(
|
102 |
+
choices=[k for k, _ in sorted_cl_scores], value=sorted_cl_scores[0][0]
|
103 |
+
)
|
104 |
|
105 |
|
106 |
def make_profession_table(num_clusters, prof_names, mod_name, max_cols=8):
|
|
|
159 |
)
|
160 |
|
161 |
|
162 |
+
def show_examplars(num_clusters, prof_name, cl_id):
|
163 |
+
examplars_dict = clusters_dicts[num_clusters]["All"][prof_name][
|
164 |
"cluster_examplars"
|
165 |
][str(cl_id)]
|
166 |
l = list(chain(*[examplars_dict[k] for k in examplars_dict]))
|
167 |
+
return [get_image(model, fname) for _, model, fname in l]
|
168 |
|
169 |
|
170 |
with gr.Blocks(title=TITLE) as demo:
|
|
|
236 |
gr.Markdown(
|
237 |
"You can show examples of profession images assigned to each cluster:"
|
238 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
cluster_id_focus = gr.Dropdown(
|
240 |
choices=[i for i in range(num_clusters_focus.value)],
|
241 |
value=0,
|
|
|
248 |
demo.load(
|
249 |
make_profession_plot,
|
250 |
[num_clusters_focus, profession_choice_focus],
|
251 |
+
[plot, cluster_id_focus],
|
252 |
queue=False,
|
253 |
)
|
254 |
for var in [num_clusters_focus, profession_choice_focus]:
|
255 |
var.change(
|
256 |
make_profession_plot,
|
257 |
[num_clusters_focus, profession_choice_focus],
|
258 |
+
[plot, cluster_id_focus],
|
259 |
queue=False,
|
260 |
)
|
261 |
with gr.Row():
|
262 |
+
examplars_plot = gr.Gallery(
|
263 |
+
label="Profession images assigned to the selected cluster."
|
264 |
+
).style(grid=5, height="auto")
|
265 |
demo.load(
|
266 |
show_examplars,
|
267 |
[
|
268 |
num_clusters_focus,
|
269 |
profession_choice_focus,
|
|
|
270 |
cluster_id_focus,
|
271 |
],
|
272 |
examplars_plot,
|
273 |
queue=False,
|
274 |
)
|
275 |
+
for var in [cluster_id_focus]:
|
276 |
var.change(
|
277 |
show_examplars,
|
278 |
[
|
279 |
num_clusters_focus,
|
280 |
profession_choice_focus,
|
|
|
281 |
cluster_id_focus,
|
282 |
],
|
283 |
examplars_plot,
|