|
import tempfile |
|
import gradio as gr |
|
import os |
|
from TTS.utils.synthesizer import Synthesizer |
|
from espeak_phonemizer import Phonemizer |
|
from engine import Piper |
|
from festival import festival_synthesize |
|
from mms import MMS |
|
|
|
MAX_TXT_LEN = 325 |
|
|
|
fonemitzador = Phonemizer("ca") |
|
|
|
def carrega_bsc(): |
|
model_path = os.getcwd() + "/models/bsc/best_model.pth" |
|
config_path = os.getcwd() + "/models/bsc/config.json" |
|
speakers_file_path = os.getcwd() + "/models/bsc/speakers.pth" |
|
vocoder_path = None |
|
vocoder_config_path = None |
|
|
|
synthesizer = Synthesizer( |
|
model_path, config_path, speakers_file_path, None, vocoder_path, vocoder_config_path, |
|
) |
|
|
|
return synthesizer |
|
|
|
def carrega_collectivat(): |
|
model_path = os.getcwd() + "/models/collectivat/fast-speech_best_model.pth" |
|
config_path = os.getcwd() + "/models/collectivat/fast-speech_config.json" |
|
vocoder_path = os.getcwd() + "/models/collectivat/ljspeech--hifigan_v2_model_file.pth" |
|
vocoder_config_path = os.getcwd() + "/models/collectivat/ljspeech--hifigan_v2_config.json" |
|
synthesizer = Synthesizer( |
|
model_path, config_path, None, None, vocoder_path, vocoder_config_path |
|
) |
|
|
|
return synthesizer |
|
|
|
def carrega_piper(): |
|
return Piper(os.getcwd() + "/models/piper/ca-upc_ona-x-low.onnx") |
|
|
|
def carrega_mms(): |
|
return MMS(os.getcwd() + "/models/mms") |
|
|
|
|
|
model_bsc = carrega_bsc() |
|
SPEAKERS = model_bsc.tts_model.speaker_manager.speaker_names |
|
|
|
model_collectivat = carrega_collectivat() |
|
|
|
model_piper = carrega_piper() |
|
|
|
model_mms = carrega_mms() |
|
|
|
request_count = 0 |
|
|
|
def tts(text, festival_voice, speaker_idx): |
|
if len(text) > MAX_TXT_LEN: |
|
text = text[:MAX_TXT_LEN] |
|
print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.") |
|
print(text) |
|
|
|
|
|
wav_bsc = model_bsc.tts(text, speaker_idx) |
|
wav_coll = model_collectivat.tts(text) |
|
wav_piper = model_piper.synthesize(text) |
|
|
|
fp_bsc = "" |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
model_bsc.save_wav(wav_bsc, fp) |
|
fp_bsc = fp.name |
|
|
|
fp_coll = "" |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
model_collectivat.save_wav(wav_coll, fp) |
|
fp_coll = fp.name |
|
|
|
fp_piper = "" |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
fp.write(wav_piper) |
|
fp_piper = fp.name |
|
|
|
fp_mms = "" |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
model_mms.synthesize(fp.name, text) |
|
fp_mms = fp.name |
|
|
|
fonemes = fonemitzador.phonemize(text, keep_clause_breakers=True) |
|
|
|
fp_festival = festival_synthesize(text, festival_voice) |
|
|
|
global request_count |
|
request_count += 1 |
|
print(f"Requests: {request_count}") |
|
return fonemes, fp_festival, fp_bsc, fp_coll, fp_piper, fp_mms |
|
|
|
|
|
description=""" |
|
Amb aquesta aplicació podeu sintetitzar text a veu amb alguns models neuronals lliures pel català i amb el motor Festival. |
|
|
|
1. Model multi-parlant VITS entrenat pel BSC (Projecte Aina) [enllaç](https://huggingface.co/projecte-aina/tts-ca-coqui-vits-multispeaker) |
|
2. Model Fastspeech entrenat per Col·lectivat [enllaç](https://github.com/CollectivaT-dev/TTS-API) |
|
3. Model VITS entrenat per Piper/Home Assistant [enllaç](https://github.com/rhasspy/piper) |
|
3. Model VITS entrenat per Meta (llicència CC-BY-NC) [enllaç](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) |
|
|
|
El primer model ha estat entrenat amb totes les veus de FestCAT, els talls de Common Voice 8 i un altre corpus pel que conté moltes veus de qualitat variable. La veu d'Ona està seleccionada per defecte per la comparativa però podeu provar les altres. |
|
Els models 2 i 3 han estat entrenats amb la veu d'Ona de FestCAT. |
|
El model 4, anomenat MMS, de Meta (Facebook) ha estat entrenat a partir de dades d'un [audiollibre](http://live.bible.is/bible/CATBSS/LUK/1) de la Bíblia |
|
|
|
Aquesta aplicació fa servir l'últim estat de l'espeak millorat per Carme Armentano del BSC |
|
https://github.com/projecte-aina/espeak-ng |
|
|
|
NOTA: El model de col·lectivat treballa amb grafemes pel que no fa servir espeak com a fonemitzador. Festival conté les seves pròpies normes fonètiques. |
|
|
|
ACTUALITZACIÖ (Agost 2024): El BSC en el marc del projecte Aina ha publicat nous models, podeu provar-los [aquí](https://huggingface.co/spaces/projecte-aina/matxa-alvocat-tts-ca). |
|
""" |
|
article= "" |
|
|
|
iface = gr.Interface( |
|
fn=tts, |
|
inputs=[ |
|
gr.Textbox( |
|
label="Text", |
|
value="L'Èlia i l'Alí a l'aula. L'oli i l'ou. Lulú olorava la lila.", |
|
), |
|
gr.Dropdown(label="Parlant del motor Festival", choices=["ona", "pau"], value="ona"), |
|
gr.Dropdown(label="Parlant del model VITS multi-parlant del BSC", choices=SPEAKERS, value="ona") |
|
], |
|
outputs=[ |
|
gr.Markdown(label="Fonemes"), |
|
gr.Audio(label="Festival",type="filepath"), |
|
gr.Audio(label="BSC VITS",type="filepath"), |
|
gr.Audio(label="Collectivat Fastspeech",type="filepath"), |
|
gr.Audio(label="Piper VITS",type="filepath"), |
|
gr.Audio(label="Meta MMS VITS",type="filepath") |
|
], |
|
title="Comparativa de síntesi lliure en català️", |
|
description=description, |
|
article=article, |
|
allow_flagging="never", |
|
layout="vertical", |
|
live=False, |
|
examples=[ |
|
["Duc pà sec al sac, m'assec on sóc i el suco amb suc", "ona", "ona"], |
|
["Un plat pla blanc, ple de pebre negre n’era. Un plat blanc pla, ple de pebre negre està", "ona", "ona"], |
|
["Visc al bosc i busco vesc i visc del vesc que busco al bosc", "ona", "ona"], |
|
["Una polla xica, pica, pellarica, camatorta i becarica va tenir sis polls xics, pics, pellarics, camacurts i becarics. Si la polla no hagués sigut xica, pica, pellarica, camatorta i becarica, els sis polls no haurien sigut xics, pics, pellarics, camacurts i becarics.", "ona", "ona"] |
|
] |
|
) |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |
|
|