Spaces:
Runtime error
Runtime error
import pickle | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline, AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline, AutoModelForSeq2SeqLM, AutoModel, RobertaModel, RobertaTokenizer | |
from sentence_transformers import SentenceTransformer | |
from fin_readability_sustainability import BERTClass, do_predict | |
import pandas as pd | |
#import lightgbm | |
#lr_clf_finbert = pickle.load(open("lr_clf_finread_new.pkl",'rb')) | |
tokenizer_read = BertTokenizer.from_pretrained('ProsusAI/finbert') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_read = BERTClass(2, "readability") | |
model_read.to(device) | |
model_read.load_state_dict(torch.load('readability_model.bin', map_location=device, strict=False)['model_state_dict']) | |
def get_readability(text): | |
df = pd.DataFrame({'sentence':[text]}) | |
actual_predictions_read = do_predict(model_read, tokenizer_read, df) | |
score = round(actual_predictions_read[1][0], 4) | |
return score | |
# Reference : https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base | |
tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") | |
model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") | |
def paraphrase( | |
question, | |
num_beams=5, | |
num_beam_groups=5, | |
num_return_sequences=5, | |
repetition_penalty=10.0, | |
diversity_penalty=3.0, | |
no_repeat_ngram_size=2, | |
temperature=0.7, | |
max_length=128 | |
): | |
input_ids = tokenizer( | |
f'paraphrase: {question}', | |
return_tensors="pt", padding="longest", | |
max_length=max_length, | |
truncation=True, | |
).input_ids | |
outputs = model.generate( | |
input_ids, temperature=temperature, repetition_penalty=repetition_penalty, | |
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, | |
num_beams=num_beams, num_beam_groups=num_beam_groups, | |
max_length=max_length, diversity_penalty=diversity_penalty | |
) | |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return res | |
def get_most_readable_paraphrse(text): | |
li_paraphrases = paraphrase(text) | |
li_paraphrases.append(text) | |
best = li_paraphrases[0] | |
score_max = get_readability(best) | |
for i in range(1,len(li_paraphrases)): | |
curr = li_paraphrases[i] | |
score = get_readability(curr) | |
if score > score_max: | |
best = curr | |
score_max = score | |
if best!=text and score_max>.6: | |
ans = "The most redable version of text that I can think of is:\n" + best | |
else: | |
"Sorry! I am not confident. As per my best knowledge, you already have the most readable version of the text!" | |
return ans | |
def set_example_text(example_text): | |
return gr.Textbox.update(value=example_text[0]) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# FinLanSer | |
Financial Language Simplifier | |
""") | |
text = gr.Textbox(label="Enter text you want to simply (make more readable)") | |
greet_btn = gr.Button("Simplify/Make Readable") | |
output = gr.Textbox(label="Output Box") | |
greet_btn.click(fn=get_most_readable_paraphrse, inputs=text, outputs=output, api_name="get_most_raedable_paraphrse") | |
example_text = gr.Dataset(components=[text], samples=[['Legally assured line of credit with a bank'], ['A mutual fund is a type of financial vehicle made up of a pool of money collected from many investors to invest in securities like stocks, bonds, money market instruments']]) | |
example_text.click(fn=set_example_text, inputs=example_text,outputs=example_text.components) | |
demo.launch() |