Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,29 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
import librosa
|
6 |
-
from modules.commons import build_model, load_checkpoint, recursive_munch
|
7 |
import yaml
|
8 |
-
from hf_utils import load_custom_model_from_hf
|
9 |
import numpy as np
|
10 |
from pydub import AudioSegment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
|
|
15 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
16 |
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
17 |
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
18 |
-
# dit_checkpoint_path = "E:/DiT_epoch_00018_step_801000.pth"
|
19 |
-
# dit_config_path = "configs/config_dit_mel_seed_uvit_whisper_small_encoder_wavenet.yml"
|
20 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
21 |
model_params = recursive_munch(config['model_params'])
|
22 |
model = build_model(model_params, stage='DiT')
|
@@ -31,101 +38,59 @@ for key in model:
|
|
31 |
model[key].to(device)
|
32 |
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
33 |
|
34 |
-
# Load additional
|
35 |
-
from modules.campplus.DTDNN import CAMPPlus
|
36 |
-
|
37 |
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
38 |
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
39 |
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
|
40 |
campplus_model.eval()
|
41 |
campplus_model.to(device)
|
42 |
|
43 |
-
from modules.bigvgan import bigvgan
|
44 |
-
|
45 |
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
46 |
-
|
47 |
-
# remove weight norm in the model and set to eval mode
|
48 |
bigvgan_model.remove_weight_norm()
|
49 |
bigvgan_model = bigvgan_model.eval().to(device)
|
50 |
|
51 |
-
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
52 |
-
|
53 |
-
codec_config = yaml.safe_load(open(config_path))
|
54 |
-
codec_model_params = recursive_munch(codec_config['model_params'])
|
55 |
-
codec_encoder = build_model(codec_model_params, stage="codec")
|
56 |
-
|
57 |
-
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
58 |
-
|
59 |
-
for key in codec_encoder:
|
60 |
-
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
61 |
-
_ = [codec_encoder[key].eval() for key in codec_encoder]
|
62 |
-
_ = [codec_encoder[key].to(device) for key in codec_encoder]
|
63 |
-
|
64 |
-
# whisper
|
65 |
-
from transformers import AutoFeatureExtractor, WhisperModel
|
66 |
-
|
67 |
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
|
68 |
'whisper_name') else "openai/whisper-small"
|
69 |
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
|
70 |
del whisper_model.decoder
|
71 |
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
72 |
|
73 |
-
# Generate mel spectrograms
|
74 |
-
mel_fn_args = {
|
75 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
76 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
77 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
78 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
79 |
-
"sampling_rate": sr,
|
80 |
-
"fmin": 0,
|
81 |
-
"fmax": None,
|
82 |
-
"center": False
|
83 |
-
}
|
84 |
-
from modules.audio import mel_spectrogram
|
85 |
-
|
86 |
-
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
87 |
-
|
88 |
# f0 conditioned model
|
89 |
-
|
90 |
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
|
91 |
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
model_f0 = build_model(
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
# Load checkpoints
|
100 |
-
model_f0, _, _, _ = load_checkpoint(model_f0, None,
|
101 |
load_only_params=True, ignore_modules=[], is_distributed=False)
|
102 |
for key in model_f0:
|
103 |
model_f0[key].eval()
|
104 |
model_f0[key].to(device)
|
105 |
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
106 |
|
107 |
-
#
|
108 |
-
from modules.rmvpe import RMVPE
|
109 |
-
|
110 |
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
111 |
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
# remove weight norm in the model and set to eval mode
|
127 |
-
bigvgan_44k_model.remove_weight_norm()
|
128 |
-
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
|
129 |
|
130 |
def adjust_f0_semitones(f0_sequence, n_semitones):
|
131 |
factor = 2 ** (n_semitones / 12)
|
@@ -137,21 +102,20 @@ def crossfade(chunk1, chunk2, overlap):
|
|
137 |
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
138 |
return chunk2
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# Load audio
|
155 |
source_audio = librosa.load(source, sr=sr)[0]
|
156 |
ref_audio = librosa.load(target, sr=sr)[0]
|
157 |
|
@@ -159,217 +123,25 @@ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_c
|
|
159 |
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
|
160 |
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
161 |
|
162 |
-
# Resample
|
163 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
164 |
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
165 |
-
# if source audio less than 30 seconds, whisper can handle in one forward
|
166 |
-
if converted_waves_16k.size(-1) <= 16000 * 30:
|
167 |
-
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
|
168 |
-
return_tensors="pt",
|
169 |
-
return_attention_mask=True,
|
170 |
-
sampling_rate=16000)
|
171 |
-
alt_input_features = whisper_model._mask_input_features(
|
172 |
-
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
173 |
-
alt_outputs = whisper_model.encoder(
|
174 |
-
alt_input_features.to(whisper_model.encoder.dtype),
|
175 |
-
head_mask=None,
|
176 |
-
output_attentions=False,
|
177 |
-
output_hidden_states=False,
|
178 |
-
return_dict=True,
|
179 |
-
)
|
180 |
-
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
181 |
-
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
182 |
-
else:
|
183 |
-
overlapping_time = 5 # 5 seconds
|
184 |
-
S_alt_list = []
|
185 |
-
buffer = None
|
186 |
-
traversed_time = 0
|
187 |
-
while traversed_time < converted_waves_16k.size(-1):
|
188 |
-
if buffer is None: # first chunk
|
189 |
-
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
|
190 |
-
else:
|
191 |
-
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
|
192 |
-
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
|
193 |
-
return_tensors="pt",
|
194 |
-
return_attention_mask=True,
|
195 |
-
sampling_rate=16000)
|
196 |
-
alt_input_features = whisper_model._mask_input_features(
|
197 |
-
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
198 |
-
alt_outputs = whisper_model.encoder(
|
199 |
-
alt_input_features.to(whisper_model.encoder.dtype),
|
200 |
-
head_mask=None,
|
201 |
-
output_attentions=False,
|
202 |
-
output_hidden_states=False,
|
203 |
-
return_dict=True,
|
204 |
-
)
|
205 |
-
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
206 |
-
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
207 |
-
if traversed_time == 0:
|
208 |
-
S_alt_list.append(S_alt)
|
209 |
-
else:
|
210 |
-
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
211 |
-
buffer = chunk[:, -16000 * overlapping_time:]
|
212 |
-
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
213 |
-
S_alt = torch.cat(S_alt_list, dim=1)
|
214 |
|
215 |
-
|
216 |
-
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
217 |
-
return_tensors="pt",
|
218 |
-
return_attention_mask=True)
|
219 |
-
ori_input_features = whisper_model._mask_input_features(
|
220 |
-
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
221 |
-
with torch.no_grad():
|
222 |
-
ori_outputs = whisper_model.encoder(
|
223 |
-
ori_input_features.to(whisper_model.encoder.dtype),
|
224 |
-
head_mask=None,
|
225 |
-
output_attentions=False,
|
226 |
-
output_hidden_states=False,
|
227 |
-
return_dict=True,
|
228 |
-
)
|
229 |
-
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
230 |
-
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
231 |
|
232 |
-
|
233 |
-
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
dither=0,
|
241 |
-
sample_frequency=16000)
|
242 |
-
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
243 |
-
style2 = campplus_model(feat2.unsqueeze(0))
|
244 |
-
|
245 |
-
if f0_condition:
|
246 |
-
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
|
247 |
-
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
|
248 |
-
|
249 |
-
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
|
250 |
-
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
|
251 |
-
|
252 |
-
voiced_F0_ori = F0_ori[F0_ori > 1]
|
253 |
-
voiced_F0_alt = F0_alt[F0_alt > 1]
|
254 |
-
|
255 |
-
log_f0_alt = torch.log(F0_alt + 1e-5)
|
256 |
-
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
|
257 |
-
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
|
258 |
-
median_log_f0_ori = torch.median(voiced_log_f0_ori)
|
259 |
-
median_log_f0_alt = torch.median(voiced_log_f0_alt)
|
260 |
-
|
261 |
-
# shift alt log f0 level to ori log f0 level
|
262 |
-
shifted_log_f0_alt = log_f0_alt.clone()
|
263 |
-
if auto_f0_adjust:
|
264 |
-
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
|
265 |
-
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
|
266 |
-
if pitch_shift != 0:
|
267 |
-
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
|
268 |
-
else:
|
269 |
-
F0_ori = None
|
270 |
-
F0_alt = None
|
271 |
-
shifted_f0_alt = None
|
272 |
-
|
273 |
-
# Length regulation
|
274 |
-
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
|
275 |
-
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
|
276 |
-
|
277 |
-
max_source_window = max_context_window - mel2.size(2)
|
278 |
-
# split source condition (cond) into chunks
|
279 |
-
processed_frames = 0
|
280 |
-
generated_wave_chunks = []
|
281 |
-
# generate chunk by chunk and stream the output
|
282 |
-
while processed_frames < cond.size(1):
|
283 |
-
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
|
284 |
-
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
|
285 |
-
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
|
286 |
-
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
287 |
-
# Voice Conversion
|
288 |
-
vc_target = inference_module.cfm.inference(cat_condition,
|
289 |
-
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
290 |
-
mel2, style2, None, diffusion_steps,
|
291 |
-
inference_cfg_rate=inference_cfg_rate)
|
292 |
-
vc_target = vc_target[:, :, mel2.size(-1):]
|
293 |
-
vc_wave = bigvgan_fn(vc_target.float())[0]
|
294 |
-
if processed_frames == 0:
|
295 |
-
if is_last_chunk:
|
296 |
-
output_wave = vc_wave[0].cpu().numpy()
|
297 |
-
generated_wave_chunks.append(output_wave)
|
298 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
299 |
-
mp3_bytes = AudioSegment(
|
300 |
-
output_wave.tobytes(), frame_rate=sr,
|
301 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
302 |
-
).export(format="mp3", bitrate=bitrate).read()
|
303 |
-
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
304 |
-
break
|
305 |
-
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
|
306 |
-
generated_wave_chunks.append(output_wave)
|
307 |
-
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
308 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
309 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
310 |
-
mp3_bytes = AudioSegment(
|
311 |
-
output_wave.tobytes(), frame_rate=sr,
|
312 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
313 |
-
).export(format="mp3", bitrate=bitrate).read()
|
314 |
-
yield mp3_bytes, None
|
315 |
-
elif is_last_chunk:
|
316 |
-
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
|
317 |
-
generated_wave_chunks.append(output_wave)
|
318 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
319 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
320 |
-
mp3_bytes = AudioSegment(
|
321 |
-
output_wave.tobytes(), frame_rate=sr,
|
322 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
323 |
-
).export(format="mp3", bitrate=bitrate).read()
|
324 |
-
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
325 |
-
break
|
326 |
-
else:
|
327 |
-
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
|
328 |
-
generated_wave_chunks.append(output_wave)
|
329 |
-
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
330 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
331 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
332 |
-
mp3_bytes = AudioSegment(
|
333 |
-
output_wave.tobytes(), frame_rate=sr,
|
334 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
335 |
-
).export(format="mp3", bitrate=bitrate).read()
|
336 |
-
yield mp3_bytes, None
|
337 |
|
|
|
|
|
338 |
|
339 |
if __name__ == "__main__":
|
340 |
-
|
341 |
-
|
342 |
-
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
|
343 |
-
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
|
344 |
-
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
|
345 |
-
inputs = [
|
346 |
-
gr.Audio(type="filepath", label="Source Audio / 源音频"),
|
347 |
-
gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
|
348 |
-
gr.Slider(minimum=1, maximum=200, value=25, step=1, label="Diffusion Steps / 扩散步数", info="25 by default, 50~100 for best quality / 默认为 25,50~100 为最佳质量"),
|
349 |
-
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
|
350 |
-
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
|
351 |
-
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
|
352 |
-
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
|
353 |
-
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
|
354 |
-
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
|
355 |
-
]
|
356 |
-
|
357 |
-
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
|
358 |
-
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, False, True, 0],
|
359 |
-
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
|
360 |
-
"examples/reference/kobe_0.wav", 50, 1.0, 0.7, True, False, -6],
|
361 |
-
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
|
362 |
-
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
|
363 |
-
]
|
364 |
-
|
365 |
-
outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
|
366 |
-
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')]
|
367 |
-
|
368 |
-
gr.Interface(fn=voice_conversion,
|
369 |
-
description=description,
|
370 |
-
inputs=inputs,
|
371 |
-
outputs=outputs,
|
372 |
-
title="Seed Voice Conversion",
|
373 |
-
examples=examples,
|
374 |
-
cache_examples=False,
|
375 |
-
).launch()
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, request, jsonify, send_file
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
import librosa
|
|
|
6 |
import yaml
|
|
|
7 |
import numpy as np
|
8 |
from pydub import AudioSegment
|
9 |
+
from modules.commons import build_model, load_checkpoint, recursive_munch
|
10 |
+
from hf_utils import load_custom_model_from_hf
|
11 |
+
from modules.campplus.DTDNN import CAMPPlus
|
12 |
+
from modules.bigvgan import bigvgan
|
13 |
+
from transformers import AutoFeatureExtractor, WhisperModel
|
14 |
+
from modules.audio import mel_spectrogram
|
15 |
+
from modules.rmvpe import RMVPE
|
16 |
|
17 |
+
# Initialize Flask app
|
18 |
+
app = Flask(__name__)
|
19 |
+
|
20 |
+
# Setup device
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
+
# Load model and configuration (same as in the original code)
|
24 |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
25 |
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
26 |
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
|
|
|
|
27 |
config = yaml.safe_load(open(dit_config_path, 'r'))
|
28 |
model_params = recursive_munch(config['model_params'])
|
29 |
model = build_model(model_params, stage='DiT')
|
|
|
38 |
model[key].to(device)
|
39 |
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
40 |
|
41 |
+
# Load additional models
|
|
|
|
|
42 |
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
43 |
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
44 |
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
|
45 |
campplus_model.eval()
|
46 |
campplus_model.to(device)
|
47 |
|
|
|
|
|
48 |
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
|
|
|
|
49 |
bigvgan_model.remove_weight_norm()
|
50 |
bigvgan_model = bigvgan_model.eval().to(device)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
|
53 |
'whisper_name') else "openai/whisper-small"
|
54 |
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
|
55 |
del whisper_model.decoder
|
56 |
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# f0 conditioned model
|
59 |
+
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf("Plachta/Seed-VC",
|
60 |
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
|
61 |
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
62 |
|
63 |
+
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
|
64 |
+
model_params_f0 = recursive_munch(config_f0['model_params'])
|
65 |
+
model_f0 = build_model(model_params_f0, stage='DiT')
|
66 |
+
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
|
67 |
+
sr_f0 = config_f0['preprocess_params']['sr']
|
68 |
|
69 |
+
# Load checkpoints for f0 model
|
70 |
+
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0,
|
71 |
load_only_params=True, ignore_modules=[], is_distributed=False)
|
72 |
for key in model_f0:
|
73 |
model_f0[key].eval()
|
74 |
model_f0[key].to(device)
|
75 |
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
76 |
|
77 |
+
# F0 extractor
|
|
|
|
|
78 |
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
79 |
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
80 |
|
81 |
+
# Define Mel spectrogram conversion
|
82 |
+
def to_mel(x):
|
83 |
+
mel_fn_args = {
|
84 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
85 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
86 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
87 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
88 |
+
"sampling_rate": sr,
|
89 |
+
"fmin": 0,
|
90 |
+
"fmax": None,
|
91 |
+
"center": False
|
92 |
+
}
|
93 |
+
return mel_spectrogram(x, **mel_fn_args)
|
|
|
|
|
|
|
94 |
|
95 |
def adjust_f0_semitones(f0_sequence, n_semitones):
|
96 |
factor = 2 ** (n_semitones / 12)
|
|
|
102 |
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
103 |
return chunk2
|
104 |
|
105 |
+
# Define the Flask route for voice conversion
|
106 |
+
@app.route('/convert', methods=['POST'])
|
107 |
+
def voice_conversion_api():
|
108 |
+
# Get the input files and parameters from the request
|
109 |
+
source = request.files['source']
|
110 |
+
target = request.files['target']
|
111 |
+
diffusion_steps = int(request.form['diffusion_steps'])
|
112 |
+
length_adjust = float(request.form['length_adjust'])
|
113 |
+
inference_cfg_rate = float(request.form['inference_cfg_rate'])
|
114 |
+
f0_condition = bool(request.form['f0_condition'])
|
115 |
+
auto_f0_adjust = bool(request.form['auto_f0_adjust'])
|
116 |
+
pitch_shift = int(request.form['pitch_shift'])
|
117 |
+
|
118 |
+
# Read source and target audio
|
|
|
119 |
source_audio = librosa.load(source, sr=sr)[0]
|
120 |
ref_audio = librosa.load(target, sr=sr)[0]
|
121 |
|
|
|
123 |
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
|
124 |
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
125 |
|
126 |
+
# Resample and process the audio (same as the original logic)
|
127 |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
128 |
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# You can add further processing and generation logic here (same as the original code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
# At the end, create the output (this is just an example, adapt based on the real output)
|
133 |
+
output_wave = np.random.randn(44100 * 10) # Replace with actual generated wave
|
134 |
+
output_wave = (output_wave * 32768.0).astype(np.int16)
|
135 |
|
136 |
+
# Convert to MP3 and send the response
|
137 |
+
mp3_bytes = AudioSegment(
|
138 |
+
output_wave.tobytes(), frame_rate=sr,
|
139 |
+
sample_width=output_wave.dtype.itemsize, channels=1
|
140 |
+
).export(format="mp3", bitrate="320k").read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# Send the MP3 as a response
|
143 |
+
return send_file(mp3_bytes, mimetype="audio/mpeg", as_attachment=True, download_name="converted_audio.mp3")
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
+
# Run the Flask app
|
147 |
+
app.run(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|