|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
import librosa |
|
from modules.commons import build_model, load_checkpoint, recursive_munch |
|
import yaml |
|
from hf_utils import load_custom_model_from_hf |
|
import spaces |
|
import numpy as np |
|
from pydub import AudioSegment |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth", |
|
"config_dit_mel_seed_facodec_small_wavenet.yml") |
|
|
|
config = yaml.safe_load(open(dit_config_path, 'r')) |
|
model_params = recursive_munch(config['model_params']) |
|
model = build_model(model_params, stage='DiT') |
|
hop_length = config['preprocess_params']['spect_params']['hop_length'] |
|
sr = config['preprocess_params']['sr'] |
|
|
|
|
|
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, |
|
load_only_params=True, ignore_modules=[], is_distributed=False) |
|
for key in model: |
|
model[key].eval() |
|
model[key].to(device) |
|
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) |
|
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus |
|
|
|
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) |
|
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path'], map_location='cpu')) |
|
campplus_model.eval() |
|
campplus_model.to(device) |
|
|
|
from modules.hifigan.generator import HiFTGenerator |
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor |
|
|
|
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"hift.pt", |
|
"hifigan.yml") |
|
hift_config = yaml.safe_load(open(hift_config_path, 'r')) |
|
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) |
|
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu')) |
|
hift_gen.eval() |
|
hift_gen.to(device) |
|
|
|
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice') |
|
if speech_tokenizer_type == 'cosyvoice': |
|
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd |
|
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None) |
|
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path, |
|
device='cuda', device_id=0) |
|
elif speech_tokenizer_type == 'facodec': |
|
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml') |
|
|
|
codec_config = yaml.safe_load(open(config_path)) |
|
codec_model_params = recursive_munch(codec_config['model_params']) |
|
codec_encoder = build_model(codec_model_params, stage="codec") |
|
|
|
ckpt_params = torch.load(ckpt_path, map_location="cpu") |
|
|
|
for key in codec_encoder: |
|
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False) |
|
_ = [codec_encoder[key].eval() for key in codec_encoder] |
|
_ = [codec_encoder[key].to(device) for key in codec_encoder] |
|
|
|
mel_fn_args = { |
|
"n_fft": config['preprocess_params']['spect_params']['n_fft'], |
|
"win_size": config['preprocess_params']['spect_params']['win_length'], |
|
"hop_size": config['preprocess_params']['spect_params']['hop_length'], |
|
"num_mels": config['preprocess_params']['spect_params']['n_mels'], |
|
"sampling_rate": sr, |
|
"fmin": 0, |
|
"fmax": 8000, |
|
"center": False |
|
} |
|
from modules.audio import mel_spectrogram |
|
|
|
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) |
|
|
|
|
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_step_440000_seed_v2_uvit_facodec_small_wavenet_f0_pruned.pth", |
|
"config_dit_mel_seed_facodec_small_wavenet_f0.yml") |
|
|
|
config = yaml.safe_load(open(dit_config_path, 'r')) |
|
model_params = recursive_munch(config['model_params']) |
|
model_f0 = build_model(model_params, stage='DiT') |
|
hop_length = config['preprocess_params']['spect_params']['hop_length'] |
|
sr = config['preprocess_params']['sr'] |
|
|
|
|
|
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path, |
|
load_only_params=True, ignore_modules=[], is_distributed=False) |
|
for key in model_f0: |
|
model_f0[key].eval() |
|
model_f0[key].to(device) |
|
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) |
|
|
|
|
|
from modules.rmvpe import RMVPE |
|
|
|
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) |
|
rmvpe = RMVPE(model_path, is_half=False, device=device) |
|
|
|
def adjust_f0_semitones(f0_sequence, n_semitones): |
|
factor = 2 ** (n_semitones / 12) |
|
return f0_sequence * factor |
|
|
|
def crossfade(chunk1, chunk2, overlap): |
|
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 |
|
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 |
|
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out |
|
return chunk2 |
|
|
|
|
|
max_context_window = sr // hop_length * 30 |
|
overlap_frame_len = 64 |
|
overlap_wave_len = overlap_frame_len * hop_length |
|
max_wave_len_per_chunk = 24000 * 20 |
|
bitrate = "320k" |
|
|
|
@spaces.GPU |
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers, f0_condition, auto_f0_adjust, pitch_shift): |
|
inference_module = model if not f0_condition else model_f0 |
|
|
|
source_audio = librosa.load(source, sr=sr)[0] |
|
ref_audio = librosa.load(target, sr=sr)[0] |
|
|
|
|
|
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) |
|
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device) |
|
|
|
|
|
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) |
|
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) |
|
|
|
|
|
if speech_tokenizer_type == 'cosyvoice': |
|
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0] |
|
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0] |
|
elif speech_tokenizer_type == 'facodec': |
|
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000) |
|
waves_input = converted_waves_24k.unsqueeze(1) |
|
wave_input_chunks = [ |
|
waves_input[..., i:i + max_wave_len_per_chunk] for i in range(0, waves_input.size(-1), max_wave_len_per_chunk) |
|
] |
|
S_alt_chunks = [] |
|
for i, chunk in enumerate(wave_input_chunks): |
|
z = codec_encoder.encoder(chunk) |
|
( |
|
quantized, |
|
codes |
|
) = codec_encoder.quantizer( |
|
z, |
|
chunk, |
|
) |
|
S_alt = torch.cat([codes[1], codes[0]], dim=1) |
|
S_alt_chunks.append(S_alt) |
|
S_alt = torch.cat(S_alt_chunks, dim=-1) |
|
|
|
|
|
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000) |
|
waves_input = waves_24k.unsqueeze(1) |
|
z = codec_encoder.encoder(waves_input) |
|
( |
|
quantized, |
|
codes |
|
) = codec_encoder.quantizer( |
|
z, |
|
waves_input, |
|
) |
|
S_ori = torch.cat([codes[1], codes[0]], dim=1) |
|
|
|
mel = to_mel(source_audio.to(device).float()) |
|
mel2 = to_mel(ref_audio.to(device).float()) |
|
|
|
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) |
|
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) |
|
|
|
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) |
|
style2 = campplus_model(feat2.unsqueeze(0)) |
|
|
|
if f0_condition: |
|
waves_16k = torchaudio.functional.resample(waves_24k, sr, 16000) |
|
converted_waves_16k = torchaudio.functional.resample(converted_waves_24k, sr, 16000) |
|
F0_ori = rmvpe.infer_from_audio(waves_16k[0], thred=0.03) |
|
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03) |
|
|
|
F0_ori = torch.from_numpy(F0_ori).to(device)[None] |
|
F0_alt = torch.from_numpy(F0_alt).to(device)[None] |
|
|
|
voiced_F0_ori = F0_ori[F0_ori > 1] |
|
voiced_F0_alt = F0_alt[F0_alt > 1] |
|
|
|
log_f0_alt = torch.log(F0_alt + 1e-5) |
|
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) |
|
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) |
|
median_log_f0_ori = torch.median(voiced_log_f0_ori) |
|
median_log_f0_alt = torch.median(voiced_log_f0_alt) |
|
|
|
|
|
|
|
|
|
shifted_log_f0_alt = log_f0_alt.clone() |
|
if auto_f0_adjust: |
|
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori |
|
shifted_f0_alt = torch.exp(shifted_log_f0_alt) |
|
if pitch_shift != 0: |
|
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) |
|
else: |
|
F0_ori = None |
|
F0_alt = None |
|
shifted_f0_alt = None |
|
|
|
|
|
cond = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers), f0=shifted_f0_alt)[0] |
|
prompt_condition = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers), f0=F0_ori)[0] |
|
|
|
max_source_window = max_context_window - mel2.size(2) |
|
|
|
processed_frames = 0 |
|
generated_wave_chunks = [] |
|
|
|
while processed_frames < cond.size(1): |
|
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] |
|
is_last_chunk = processed_frames + max_source_window >= cond.size(1) |
|
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) |
|
|
|
vc_target = inference_module.cfm.inference(cat_condition, |
|
torch.LongTensor([cat_condition.size(1)]).to(mel2.device), |
|
mel2, style2, None, diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate) |
|
vc_target = vc_target[:, :, mel2.size(-1):] |
|
vc_wave = hift_gen.inference(vc_target, f0=None) |
|
if processed_frames == 0: |
|
if is_last_chunk: |
|
output_wave = vc_wave[0].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
output_wave = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave.tobytes(), frame_rate=sr, |
|
sample_width=output_wave.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=bitrate).read() |
|
yield mp3_bytes |
|
break |
|
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
output_wave = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave.tobytes(), frame_rate=sr, |
|
sample_width=output_wave.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=bitrate).read() |
|
yield mp3_bytes |
|
elif is_last_chunk: |
|
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
output_wave = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave.tobytes(), frame_rate=sr, |
|
sample_width=output_wave.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=bitrate).read() |
|
yield mp3_bytes |
|
break |
|
else: |
|
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
output_wave = (output_wave * 32768.0).astype(np.int16) |
|
mp3_bytes = AudioSegment( |
|
output_wave.tobytes(), frame_rate=sr, |
|
sample_width=output_wave.dtype.itemsize, channels=1 |
|
).export(format="mp3", bitrate=bitrate).read() |
|
yield mp3_bytes |
|
|
|
|
|
if __name__ == "__main__": |
|
description = ("Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) " |
|
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> " |
|
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.") |
|
inputs = [ |
|
gr.Audio(type="filepath", label="Source Audio"), |
|
gr.Audio(type="filepath", label="Reference Audio"), |
|
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"), |
|
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"), |
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"), |
|
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"), |
|
gr.Checkbox(label="Use F0 conditioned model", value=False, info="Must set to true for singing voice conversion"), |
|
gr.Checkbox(label="Auto F0 adjust", value=True, |
|
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used."), |
|
gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0, info='Pitch shift in semitones, only works when F0 conditioned model is used'), |
|
] |
|
|
|
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 1, False, True, 0], |
|
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav", |
|
"examples/reference/teio_0.wav", 100, 1.0, 0.7, 3, True, True, 0],] |
|
|
|
outputs = gr.Audio(label="Output Audio", streaming=True, format='mp3') |
|
|
|
gr.Interface(fn=voice_conversion, |
|
description=description, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title="Seed Voice Conversion", |
|
examples=examples, |
|
cache_examples=False, |
|
).launch() |