Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[65]: | |
import os | |
import gradio as gr | |
import torch | |
import re | |
import soundfile as sf | |
import numpy as np | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer, AutoTokenizer, AutoModelForCausalLM | |
import soundfile as sf | |
import noisereduce as nr | |
import librosa | |
import pyloudnorm as pyln | |
# Load the models and tokenizers | |
model1 = Wav2Vec2ForCTC.from_pretrained("ai4bharat/indicwav2vec-hindi") | |
tokenizer1 = Wav2Vec2Tokenizer.from_pretrained("ai4bharat/indicwav2vec-hindi") | |
# model1 = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") | |
# tokenizer1 = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h") | |
# Loading the tokenizer and model from Hugging Face's model hub. | |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") | |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", token=os.environ.get('HF_TOKEN')) | |
# tokenizer = AutoTokenizer.from_pretrained("soketlabs/pragna-1b", token=os.environ.get('HF_TOKEN')) | |
# model = AutoModelForCausalLM.from_pretrained( | |
# "soketlabs/pragna-1b", | |
# token=os.environ.get('HF_TOKEN'), | |
# revision='3c5b8b1309f7d89710331ba2f164570608af0de7' | |
# ) | |
# model.load_adapter('soketlabs/pragna-1b-it-v0.1', token=os.environ.get('HF_TOKEN')) | |
# using CUDA for an optimal experience | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
# Function to transcribe audio | |
def transcribe_audio(audio_data): | |
input_audio = torch.tensor(audio_data).float() | |
input_values = tokenizer1(input_audio.squeeze(), return_tensors="pt").input_values | |
with torch.no_grad(): | |
logits = model1(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = tokenizer1.batch_decode(predicted_ids)[0] | |
return transcription | |
# Function to generate response | |
def generate_response(transcription): | |
try: | |
messages = [ | |
{"role": "system", "content": " you are a friendly bot to help the user"}, | |
{"role": "user", "content": transcription}, | |
] | |
# tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
sys_prompt = 'You are Pragna, an AI built by Soket AI Labs. You should never lie and always tell facts. Help the user as much as you can and be open to say I dont know this if you are not sure of the answer' | |
eos_token = tokenizer.eos_token | |
tokenized_chat = f'<|system|>\n{sys_prompt}{eos_token}<|user|>\n{transcription}{eos_token}<|assistant|>\n' | |
print(tokenized_chat) | |
tokenized_chat = tokenizer(tokenized_chat, return_tensors="pt") | |
input_ids = tokenized_chat['input_ids'].to(device) | |
if len(input_ids.shape) == 1: | |
input_ids = input_ids.unsqueeze(0) | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
# max_new_tokens=100, | |
# num_return_sequences=1, | |
# temperature=0.1, | |
# top_k=50, | |
# top_p=0.5, | |
# repetition_penalty=1.2, | |
# do_sample=True | |
max_new_tokens=300, | |
do_sample=True, | |
top_k=5, | |
num_beams=1, | |
use_cache=False, | |
temperature=0.2, | |
repetition_penalty=1.1, | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return find_last_sentence(generated_text) | |
except Exception as e: | |
print("Error during response generation:", e) | |
return "Response generation error: " + str(e) | |
# Function to find last sentence in generated text | |
def find_last_sentence(text): | |
sentence_endings = re.finditer(r'[।?!]', text) | |
end_positions = [ending.end() for ending in sentence_endings] | |
if end_positions: | |
return text[:end_positions[-1]] | |
return text | |
# In[76]: | |
def spectral_subtraction(audio_data, sample_rate): | |
# Compute short-time Fourier transform (STFT) | |
stft = librosa.stft(audio_data) | |
# Compute power spectrogram | |
power_spec = np.abs(stft)**2 | |
# Estimate noise power spectrum | |
noise_power = np.median(power_spec, axis=1) | |
# Apply spectral subtraction | |
alpha = 2.0 # Adjustment factor, typically between 1.0 and 2.0 | |
denoised_spec = np.maximum(power_spec - alpha * noise_power[:, np.newaxis], 0) | |
# Inverse STFT to obtain denoised audio | |
denoised_audio = librosa.istft(np.sqrt(denoised_spec) * np.exp(1j * np.angle(stft))) | |
return denoised_audio | |
def apply_compression(audio_data, sample_rate): | |
# Apply dynamic range compression | |
meter = pyln.Meter(sample_rate) # create BS.1770 meter | |
loudness = meter.integrated_loudness(audio_data) | |
# Normalize audio to target loudness of -24 LUFS | |
loud_norm = pyln.normalize.loudness(audio_data, loudness, -24.0) | |
return loud_norm | |
def process_audio(audio_file_path): | |
try: | |
# Read audio data | |
audio_data, sample_rate = librosa.load(audio_file_path) | |
print(f"Read audio data: {audio_file_path}, Sample Rate: {sample_rate}") | |
# Apply noise reduction using noisereduce | |
reduced_noise = nr.reduce_noise(y=audio_data, sr=sample_rate) | |
print("Noise reduction applied") | |
# Apply spectral subtraction for additional noise reduction | |
denoised_audio = spectral_subtraction(reduced_noise, sample_rate) | |
print("Spectral subtraction applied") | |
# Apply dynamic range compression to make foreground louder | |
compressed_audio = apply_compression(denoised_audio, sample_rate) | |
print("Dynamic range compression applied") | |
# Remove silent spaces | |
final_audio = librosa.effects.trim(compressed_audio)[0] | |
print("Silences trimmed") | |
# Save the final processed audio to a file with a fixed name | |
processed_file_path = 'processed_audio.wav' | |
sf.write(processed_file_path, final_audio, sample_rate) | |
print(f"Processed audio saved to: {processed_file_path}") | |
# Check if file exists to confirm it was saved | |
if not os.path.isfile(processed_file_path): | |
raise FileNotFoundError(f"Processed file not found: {processed_file_path}") | |
# Load the processed audio for transcription | |
processed_audio_data, _ = librosa.load(processed_file_path, sr=16000) | |
print(f"Processed audio reloaded for transcription: {processed_file_path}") | |
# Transcribe audio | |
transcription = transcribe_audio(processed_audio_data) | |
print("Transcription completed") | |
# Generate response | |
response = generate_response(transcription) | |
print("Response generated") | |
return processed_file_path, transcription, response | |
except Exception as e: | |
print("Error during audio processing:", e) | |
return "Error during audio processing:", str(e) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(label="Record Audio", type="filepath"), | |
outputs=[gr.Audio(label="Processed Audio"), gr.Textbox(label="Transcription"), gr.Textbox(label="Response")] | |
) | |
if __name__ == "__main__": | |
iface.launch(share=True) | |