import streamlit as st import pandas as pd import numpy as np from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer from bokeh.plotting import figure, output_notebook, show, save from bokeh.io import output_file, show from bokeh.models import ColumnDataSource, HoverTool from sklearn.manifold import TSNE @st.cache def load_model(): model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') model.eval() return model @st.cache def load_plot_data(): embs = np.load('semeval2015-embs.npy') data = pd.read_csv('semeval2015-data.csv') return embs, data st.title("Sentence Embedding for Spanish with Bertin") st.write("Sentence embedding for spanish trained on NLI. Used for Sentence Textual Similarity. Based on the model hackathon-pln-es/bertin-roberta-base-finetuning-esnli.") sent1 = st.text_area('Enter sentence 1') sent2 = st.text_area('Enter sentence 2') if st.button('Compute similarity'): if sent1 and sent2: model = load_model() encodings = model.encode([sent1, sent2]) sim = cos_sim(encodings[0], encodings[1]).numpy().tolist()[0][0] st.text('Cosine Similarity: {0:.4f}'.format(sim)) print('Generating visualization...') sentembs, data = load_plot_data() X_embedded = TSNE(n_components=2, learning_rate='auto', init='random').fit_transform(np.concatenate([sentembs, encodings], axis=1)) data.append({'sent': sent1, 'color': '#F0E442'}) # sentence 1 data.append({'sent': sent2, 'color': '#D55E00'}) # sentence 2 data['x'] = X_embedded[:,0] data['y'] = X_embedded[:,1] source = ColumnDataSource(data) p = figure(title="Embeddings in space") p.circle( x='x', y='y', legend_label="Objects", #fill_color=["red"], color='color', fill_alpha=0.5, line_color="blue", size=14, source=source ) p.add_tools(HoverTool( tooltips=[ ('sent', '@sent') ], formatters={ '@sent': 'printf' }, mode='mouse' )) st.bokeh_chart(p, use_container_width=True) else: st.write('Missing a sentences') else: pass