Sexismdetection / app.py
robertou2's picture
Update app.py
5c43825
raw
history blame
1.66 kB
import tweepy as tw
import streamlit as st
import pandas as pd
from transformers import pipeline
consumer_key = '9jIZw6aJxenAhwrbfiymcP1FL'
consumer_secret = 'PtwmIIHckaGIe4XyJsen1Oy9qCPbhce66UdWIlrnKVEMfLwKg5'
access_token = '975820852901097473-sv2EVjyrOR0TwNmnv8gyyHXu30XzJC7'
access_token_secret = 'K8bGe0Neqil5BcHMjJdE1vBecYFTvXa3AHvLZoLNQ8WBO'
auth = tw.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tw.API(auth, wait_on_rate_limit=True)
st.title('Analisis de comentarios sexistas en Twitter con Tweepy and HuggingFace Transformers')
st.markdown('Esta app utiliza tweepy para descargar get tweets de twitter en base a la información de de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexsitas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado')
def run():
with st.form(key='Introduzca nombre'):
search_words = st.text_input('Introduzca el termino para analizar')
number_of_tweets = st.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10)
submit_button = st.form_submit_button(label='Submit')
if submit_button:
tweets =tw.Cursor(api.search_tweets,q=search_words).items(number_of_tweets)
tweet_list = [i.text for i in tweets]
p = [i for i in classifier(tweet_list)]
q=[p[i]['label'] for i in range(len(p))]
df = pd.DataFrame(list(zip(tweet_list, q)),columns =['Latest'+str(number_of_tweets)+'Tweets'+'on'+search_words, 'sentiment'])
st.write(df)
run()