Spaces:
Sleeping
Sleeping
cambio de la pregunta con dropdow
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from simpletransformers.t5 import T5Model
|
3 |
|
4 |
|
5 |
model_args = T5Args()
|
@@ -14,17 +14,18 @@ model_args.use_cuda = False
|
|
14 |
model_args.use_multiprocessing = False
|
15 |
model_args.use_multiprocessing_for_evaluation = False
|
16 |
model_args.use_multiprocessed_decoding = False
|
17 |
-
model_args.learning_rate=0.001
|
18 |
#model_args.num_beams = 3
|
19 |
model_args.train_batch_size = 4
|
20 |
model_args.eval_batch_size = 4
|
21 |
model_args.adafactor_beta1 = 0
|
22 |
-
model_args.length_penalty=1.5
|
23 |
-
model_args.max_length=100
|
24 |
model_args.max_seq_length = 100
|
25 |
|
26 |
|
27 |
-
model = T5Model("mt5", "hackathon-pln-es/itama",
|
|
|
28 |
|
29 |
article = '''
|
30 |
# ITAMA
|
@@ -34,27 +35,37 @@ ser considerado tabú. Esperamos poder generar un modelo con estas preguntas-res
|
|
34 |
este conocimiento y responder a preguntas frecuentes en topicos de interés común y/o bienestar personal. '''
|
35 |
|
36 |
|
37 |
-
def predict(
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
|
42 |
gr.Interface(
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from simpletransformers.t5 import T5Model, T5Args
|
3 |
|
4 |
|
5 |
model_args = T5Args()
|
|
|
14 |
model_args.use_multiprocessing = False
|
15 |
model_args.use_multiprocessing_for_evaluation = False
|
16 |
model_args.use_multiprocessed_decoding = False
|
17 |
+
model_args.learning_rate = 0.001
|
18 |
#model_args.num_beams = 3
|
19 |
model_args.train_batch_size = 4
|
20 |
model_args.eval_batch_size = 4
|
21 |
model_args.adafactor_beta1 = 0
|
22 |
+
model_args.length_penalty = 1.5
|
23 |
+
model_args.max_length = 100
|
24 |
model_args.max_seq_length = 100
|
25 |
|
26 |
|
27 |
+
model = T5Model("mt5", "hackathon-pln-es/itama",
|
28 |
+
args=model_args, use_cuda=False)
|
29 |
|
30 |
article = '''
|
31 |
# ITAMA
|
|
|
35 |
este conocimiento y responder a preguntas frecuentes en topicos de interés común y/o bienestar personal. '''
|
36 |
|
37 |
|
38 |
+
def predict(profession, question):
|
39 |
+
|
40 |
+
prediction = model.predict([f'{profession}: {question}'])[0]
|
41 |
+
return prediction
|
42 |
|
43 |
|
44 |
gr.Interface(
|
45 |
+
fn=predict,
|
46 |
+
#inputs=gr.inputs.Textbox(lines=1, label="Pregunta por profesión - {profesión}: {pregunta}"),
|
47 |
+
inputs=[
|
48 |
+
#gr.inputs.Textbox(label="Pregunta por profesión - {profesión}: {pregunta}"),
|
49 |
+
gr.inputs.Dropdown(choices=["medico", "psicologo", "ciencias", "ingeniero",
|
50 |
+
"profesor", "jefe", "abogado"], type="value", default='medico', label="Profesión"),
|
51 |
+
gr.inputs.Textbox(label="Pregunta"),
|
52 |
+
|
53 |
+
],
|
54 |
+
|
55 |
+
|
56 |
+
outputs=[
|
57 |
+
gr.outputs.Textbox(label="Respuesta"),
|
58 |
+
],
|
59 |
+
theme="peach",
|
60 |
+
title='Modelo predicctivo AMA Reddit',
|
61 |
+
description='Modelo T5 Transformer (mt5-base), utilizando dataset de preguntas y respuestas de AMA Reddit',
|
62 |
+
examples=[
|
63 |
+
['psicologo','cuanto trabajas al año?'],
|
64 |
+
['jefe','cuanto trabajas al año?'],
|
65 |
+
['profesor','cuando dinero ganas al año?'],
|
66 |
+
],
|
67 |
+
article=article,
|
68 |
+
# allow_flagging="manual",
|
69 |
+
#flagging_options=["right translation", "wrong translation", "error", "other"],
|
70 |
+
# flagging_dir="logs"
|
71 |
+
).launch(enable_queue=True)
|