File size: 4,977 Bytes
f3fe141
 
5d327fe
738d321
5d327fe
738d321
5d327fe
f3fe141
5d327fe
936d180
3d2e947
 
 
f3fe141
3d2e947
 
 
 
 
 
 
8df1b3b
3d2e947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3fe141
20801dd
 
3d2e947
 
 
aa42b04
7a88212
 
 
 
 
 
 
 
 
 
ee74ba4
da98d97
ee74ba4
7a88212
da98d97
7a88212
 
 
 
 
 
 
 
 
 
ee74ba4
2a1ebf7
25d06af
2a1ebf7
53d0b05
 
2a1ebf7
 
 
 
 
 
 
936d180
aa42b04
7a88212
da98d97
7a88212
 
2a1ebf7
 
90e6bb7
 
7a88212
90e6bb7
7a88212
90e6bb7
b5de271
7a88212
90e6bb7
2a1ebf7
90e6bb7
e50d585
90e6bb7
e50d585
90e6bb7
 
3ba2d59
90e6bb7
e50d585
2a1ebf7
90e6bb7
 
 
 
 
ee74ba4
777c11a
90e6bb7
7a88212
6daba21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr

from app_data import examples

from app_details import title, description, article

from transformers import AutoModelForTokenClassification,AutoModelForSequenceClassification, AutoTokenizer, pipeline

from sentence_transformers import SentenceTransformer, util

def get_entities(example):
    model_name = "hackathon-pln-es/jurisbert-finetuning-ner"
    tokenizer = AutoTokenizer.from_pretrained(model_name,       add_prefix_space=True)
  
    model = AutoModelForTokenClassification.from_pretrained(model_name)
    token_classifier = pipeline("token-classification", aggregation_strategy="simple", model=model, tokenizer=tokenizer)
    results = token_classifier(example.lower())
    
    output = []

    i=0
    item = None
    prev_item = None
    next_item = None
    while i < (len(results)):
        item = results[i]
        p=i-1
        n=i+1
        
        if p > 0:
            prev_item = results[p]
        
        
        if n<(len(results)):
            next_item = results[n]
        
        
        if (i==0):
            if item["start"]>0:
                output.extend([(example[0:item["start"]], None)])
        output.extend([(example[item["start"]:item["end"]], item["entity_group"])])
        if (next_item!=None):
            ##verificar el tramo entre actual y siguiente
            if(item["end"]!=next_item["start"]):
                output.extend([(example[item["end"]:next_item["start"]], None)])
        i=i+1

    if (item!=None): 
      if (item["end"] < len(example)):
        output.extend([(example[item["end"]:len(example)], None)])
    
    return output

def clasifica_sistema_universal(example):
    tokenizer = AutoTokenizer.from_pretrained("hackathon-pln-es/jurisbert-class-tratados-internacionales-sistema-universal")

    model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/jurisbert-class-tratados-internacionales-sistema-universal")
    text_classifier = pipeline("text-classification",  model=model, tokenizer=tokenizer)
    results= text_classifier (example)

    salida=[]
    for i in results:
      salida.append({i["label"]:i["score"]})
    
    #return results[0]["label"], round(results[0]["score"], 5)
  

    return {i["label"]: float(i["score"]) for i in results}

def clasifica_conv_americana(example):
  tokenizer = AutoTokenizer.from_pretrained("hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh")

  model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh")
  
  text_classifier = pipeline("text-classification",  model=model, tokenizer=tokenizer)
  results= text_classifier (example)
  
  return {i["label"]: float(i["score"]) for i in results}
  
def similitud(example,example2):
    model = SentenceTransformer("hackathon-pln-es/jurisbert-tsdae-sentence-transformer")
    #Compute embedding for both lists
    embeddings1 = model.encode(example, convert_to_tensor=True)
    embeddings2 = model.encode(example2, convert_to_tensor=True)
    
    #Compute cosine-similarits
    cosine_scores = util.cos_sim(embeddings1, embeddings2)
    
    return float(cosine_scores[0])*100

  
def process(example,example2):
    entidades = get_entities(example)

    class_sistema_universal = clasifica_sistema_universal(example)

    class_conv_americana = clasifica_conv_americana(example)
    
    score_similitud = similitud(example,example2)
    
    entidades2 = get_entities(example2)

    class_sistema_universal2 = clasifica_sistema_universal(example2)

    class_conv_americana2 = clasifica_conv_americana(example2)
    return entidades,class_sistema_universal, class_conv_americana, score_similitud , entidades2 ,class_sistema_universal2, class_conv_americana2

input_sen = gr.inputs.Textbox(lines=10, label="Texto a analizar:")

input_sen2 = gr.inputs.Textbox(lines=10, label="Texto a comparar:")

#### Resultados texto analizar:
output_hgtxt= gr.outputs.HighlightedText(label="Reconocimiento de entidades:")
output_lbl1= gr.outputs.Label(label="Clasificaci贸n modelo sistema universal:")
output_lbl2= gr.outputs.Label(label="Clasificaci贸n modelo convenci贸n americana:")

#### Resultados de la similitud
output_txt= gr.outputs.Textbox(label="Porcentaje de similitud entre los textos proporcionados:")

#### Resultados texto a comparar:
output_hgtxt2= gr.outputs.HighlightedText(label="Reconocimiento de entidades:")
output_lbl3= gr.outputs.Label(label="Clasificaci贸n modelo sistema universal:")
output_lbl4= gr.outputs.Label(label="Clasificaci贸n modelo convenci贸n americana:")

#iface = gr.Interface(fn=process, inputs=input_sen, outputs=["highlight","label","label"], examples=examples, title=title, description = description)

iface = gr.Interface(fn=process, inputs=[input_sen, input_sen2], outputs=[output_hgtxt,output_lbl2,output_lbl2,output_txt,output_hgtxt2,output_lbl3,output_lbl4], examples=examples, title=title, description = description, article=article)

iface.launch()