Spaces:
Runtime error
Runtime error
File size: 3,505 Bytes
94606c9 de071ee 94606c9 49dc227 d995b22 94606c9 369620c 94606c9 628ab0d 94606c9 369620c 94606c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import time
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import speech_recognition as sr
from math import log2, pow
import os
#from scipy.fftpack import fft
import gc
peft_model_id="hackathon-somos-nlp-2023/SalpiBloomZ_15949_input_512-1b7"
config = PeftConfig.from_pretrained(peft_model_id)
model2 = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True,
load_in_8bit=True,
# load_in_8bit_fp32_cpu_offload=True,
device_map='auto')
tokenizer2 = AutoTokenizer.from_pretrained(peft_model_id)
model2 = PeftModel.from_pretrained(model2, peft_model_id)
Problema_tarjetaCredito= os.path.abspath("Problema_tarjetaCredito.ogg")
list_audios= [[Problema_tarjetaCredito]]
def gen_conversation(text,max_new_tokens=100):
text = "<SN>instruction: " + text + "\n "
batch = tokenizer2(text, return_tensors='pt')
batch = {k: v.to('cuda') for k, v in batch.items()}
with torch.cuda.amp.autocast():
output_tokens = model2.generate(**batch,
max_new_tokens=max_new_tokens,
eos_token_id= tokenizer2.eos_token_id,
pad_token_id= tokenizer2.pad_token_id,
bos_token_id= tokenizer2.bos_token_id,
early_stopping = True,
no_repeat_ngram_size=2,
repetition_penalty=1.2,
temperature=.69,
num_beams=3
)
gc.collect()
torch.cuda.memory_summary(device=None, abbreviated=False)
return tokenizer2.decode(output_tokens[0], skip_special_tokens=True).split("\n")[-1].replace("output:","")
conversacion = ""
def speech_to_text(audio_file, texto_adicional):
global conversacion
if audio_file is not None:
# Lógica para entrada de audio
r = sr.Recognizer()
audio_data = sr.AudioFile(audio_file)
with audio_data as source:
audio = r.record(source)
text_enrada=""
texto_generado = r.recognize_google(audio, language="es-ES")
texto_generado= f"[|Audio a texto|]:{texto_generado}\n" + "<br>[AGENTE]:"+gen_conversation(texto_generado,max_new_tokens=500)
texto_generado = "<div style='color: #66b3ff;'>" + texto_generado + "</div><br>"
else:
texto_generado= f"[|Solo texto|]:{texto_adicional}\n" + "<br>[AGENTE]:"+gen_conversation(texto_adicional,max_new_tokens=500)
texto_generado = "<div style='color: #66b3ff;'> " + texto_generado + "</div><br>"
conversacion += texto_generado
return conversacion
iface = gr.Interface(
fn=speech_to_text,
inputs=[gr.inputs.Audio(label="Voz", type="filepath"), gr.inputs.Textbox(label="Texto adicional")],
outputs=gr.outputs.HTML(label=["chatbot","state"]),
title="Chat bot para empresas.",
description="Este modelo convierte la entrada de voz o texto y hace inferencia",
examples=list_audios,
theme="default",
layout="vertical",
allow_flagging=False,
flagging_dir=None,
server_name=None,
server_port=None,
live=False,
capture_session=False
)
iface.launch()
|