Spaces:
sonalkum
/
Running on Zero

File size: 19,579 Bytes
1e6d67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

<h1 align="center"> <p>πŸ€— PEFT</p></h1>
<h3 align="center">
    <p>State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods</p>
</h3>

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning. 

Seamlessly integrated with πŸ€— Accelerate for large scale models leveraging DeepSpeed and Big Model Inference. 

Supported methods:

1. LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/abs/2106.09685)
2. Prefix Tuning: [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://aclanthology.org/2021.acl-long.353/), [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.org/pdf/2110.07602.pdf)
3. P-Tuning: [GPT Understands, Too](https://arxiv.org/abs/2103.10385)
4. Prompt Tuning: [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691)
5. AdaLoRA: [Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning](https://arxiv.org/abs/2303.10512)  

## Getting started

```python
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
model_name_or_path = "bigscience/mt0-large"
tokenizer_name_or_path = "bigscience/mt0-large"

peft_config = LoraConfig(
    task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282
```

## Use Cases

### Get comparable performance to full finetuning by adapting LLMs to downstream tasks using consumer hardware

GPU memory required for adapting LLMs on the few-shot dataset [`ought/raft/twitter_complaints`](https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints). Here, settings considered
are full finetuning, PEFT-LoRA using plain PyTorch and  PEFT-LoRA using DeepSpeed with CPU Offloading. 

Hardware: Single A100 80GB GPU with CPU RAM above 64GB

|   Model         | Full Finetuning | PEFT-LoRA PyTorch  | PEFT-LoRA DeepSpeed with CPU Offloading |
| --------- | ---- | ---- | ---- |
| bigscience/T0_3B (3B params) | 47.14GB GPU / 2.96GB CPU  | 14.4GB GPU / 2.96GB CPU | 9.8GB GPU / 17.8GB CPU |
| bigscience/mt0-xxl (12B params) | OOM GPU | 56GB GPU / 3GB CPU | 22GB GPU / 52GB CPU |
| bigscience/bloomz-7b1 (7B params) | OOM GPU | 32GB GPU / 3.8GB CPU | 18.1GB GPU / 35GB CPU |

Performance of PEFT-LoRA tuned [`bigscience/T0_3B`](https://huggingface.co/bigscience/T0_3B) on [`ought/raft/twitter_complaints`](https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints) leaderboard. 
A point to note is that we didn't try to squeeze performance by playing around with input instruction templates, LoRA hyperparams and other training related hyperparams. Also, we didn't use the larger 13B [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl) model.
So, we are already seeing comparable performance to SoTA with parameter efficient tuning. Also, the final checkpoint size is just `19MB` in comparison to `11GB` size of the backbone [`bigscience/T0_3B`](https://huggingface.co/bigscience/T0_3B) model.

|   Submission Name        | Accuracy |
| --------- | ---- |
| Human baseline (crowdsourced) |	0.897 |
| Flan-T5 | 0.892 |
| lora-t0-3b | 0.863 |

**Therefore, we can see that performance comparable to SoTA is achievable by PEFT methods with consumer hardware such as 16GB and 24GB GPUs.**

A insightful blogpost explaining the advantages of using PEFT for fine-tuning FlanT5-XXL: [https://www.philschmid.de/fine-tune-flan-t5-peft](https://www.philschmid.de/fine-tune-flan-t5-peft)

### Parameter Efficient Tuning of Diffusion Models

GPU memory required by different settings during training is given below. The final checkpoint size is `8.8 MB`.

Hardware: Single A100 80GB GPU with CPU RAM above 64GB

|   Model         | Full Finetuning | PEFT-LoRA  | PEFT-LoRA with Gradient Checkpointing  |
| --------- | ---- | ---- | ---- |
| CompVis/stable-diffusion-v1-4 | 27.5GB GPU / 3.97GB CPU | 15.5GB GPU / 3.84GB CPU | 8.12GB GPU / 3.77GB CPU | 


**Training**
An example of using LoRA for parameter efficient dreambooth training is given in `~examples/lora_dreambooth/train_dreambooth.py`

```bash
export MODEL_NAME= "CompVis/stable-diffusion-v1-4" #"stabilityai/stable-diffusion-2-1"
export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"

accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --class_data_dir=$CLASS_DIR \
  --output_dir=$OUTPUT_DIR \
  --train_text_encoder \
  --with_prior_preservation --prior_loss_weight=1.0 \
  --instance_prompt="a photo of sks dog" \
  --class_prompt="a photo of dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --num_class_images=200 \
  --use_lora \
  --lora_r 16 \
  --lora_alpha 27 \
  --lora_text_encoder_r 16 \
  --lora_text_encoder_alpha 17 \
  --learning_rate=1e-4 \
  --gradient_accumulation_steps=1 \
  --gradient_checkpointing \
  --max_train_steps=800
```

Try out the πŸ€— Gradio Space which should run seamlessly on a T4 instance:
[smangrul/peft-lora-sd-dreambooth](https://huggingface.co/spaces/smangrul/peft-lora-sd-dreambooth).

![peft lora dreambooth gradio space](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/peft_lora_dreambooth_gradio_space.png)

**NEW** ✨ Multi Adapter support and combining multiple LoRA adapters in a weighted combination 
![peft lora dreambooth weighted adapter](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/weighted_adapter_dreambooth_lora.png)

### Parameter Efficient Tuning of LLMs for RLHF components such as Ranker and Policy
- Here is an example in [trl](https://github.com/lvwerra/trl) library using PEFT+INT8 for tuning policy model: [gpt2-sentiment_peft.py](https://github.com/lvwerra/trl/blob/main/examples/sentiment/scripts/gpt2-sentiment_peft.py) and corresponding [Blog](https://huggingface.co/blog/trl-peft)
- Example using PEFT for Instrction finetuning, reward model and policy : [stack_llama](https://github.com/lvwerra/trl/tree/main/examples/stack_llama/scripts) and corresponding [Blog](https://huggingface.co/blog/stackllama) 

### INT8 training of large models in Colab using PEFT LoRA and bits_and_bytes

- Here is now a demo on how to fine tune [OPT-6.7b](https://huggingface.co/facebook/opt-6.7b) (14GB in fp16) in a Google Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing)

- Here is now a demo on how to fine tune [whishper-large](openai/whisper-large-v2) (1.5B params) (14GB in fp16) in a Google Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1DOkD_5OUjFa0r5Ik3SgywJLJtEo2qLxO?usp=sharing) and [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1vhF8yueFqha3Y3CpTHN6q9EVcII9EYzs?usp=sharing)

### Save compute and storage even for medium and small models

Save storage by avoiding full finetuning of models on each of the downstream tasks/datasets,
With PEFT methods, users only need to store tiny checkpoints in the order of `MBs` all the while retaining 
performance comparable to full finetuning.

An example of using LoRA for the task of adapting `LayoutLMForTokenClassification` on `FUNSD` dataset is given in `~examples/token_classification/PEFT_LoRA_LayoutLMForTokenClassification_on_FUNSD.py`. We can observe that with only `0.62 %` of parameters being trainable, we achieve performance (F1 0.777) comparable to full finetuning (F1 0.786) (without any hyerparam tuning runs for extracting more performance), and the checkpoint of this is only `2.8MB`. Now, if there are `N` such datasets, just have these PEFT models one for each dataset and save a lot of storage without having to worry about the problem of catastrophic forgetting or overfitting of backbone/base model.

Another example is fine-tuning [`roberta-large`](https://huggingface.co/roberta-large) on [`MRPC` GLUE](https://huggingface.co/datasets/glue/viewer/mrpc) dataset using different PEFT methods. The notebooks are given in `~examples/sequence_classification`. 


## PEFT + πŸ€— Accelerate

PEFT models work with πŸ€— Accelerate out of the box. Use πŸ€— Accelerate for Distributed training on various hardware such as GPUs, Apple Silicon devices, etc during training.
Use πŸ€— Accelerate for inferencing on consumer hardware with small resources.

### Example of PEFT model training using πŸ€— Accelerate's DeepSpeed integration

DeepSpeed version required `v0.8.0`. An example is provided in `~examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py`. 
  a. First, run `accelerate config --config_file ds_zero3_cpu.yaml` and answer the questionnaire. 
  Below are the contents of the config file.
  ```yaml
  compute_environment: LOCAL_MACHINE
  deepspeed_config:
    gradient_accumulation_steps: 1
    gradient_clipping: 1.0
    offload_optimizer_device: cpu
    offload_param_device: cpu
    zero3_init_flag: true
    zero3_save_16bit_model: true
    zero_stage: 3
  distributed_type: DEEPSPEED
  downcast_bf16: 'no'
  dynamo_backend: 'NO'
  fsdp_config: {}
  machine_rank: 0
  main_training_function: main
  megatron_lm_config: {}
  mixed_precision: 'no'
  num_machines: 1
  num_processes: 1
  rdzv_backend: static
  same_network: true
  use_cpu: false
  ```
  b. run the below command to launch the example script
  ```bash
  accelerate launch --config_file ds_zero3_cpu.yaml examples/peft_lora_seq2seq_accelerate_ds_zero3_offload.py
  ```

  c. output logs:
  ```bash
  GPU Memory before entering the train : 1916
  GPU Memory consumed at the end of the train (end-begin): 66
  GPU Peak Memory consumed during the train (max-begin): 7488
  GPU Total Peak Memory consumed during the train (max): 9404
  CPU Memory before entering the train : 19411
  CPU Memory consumed at the end of the train (end-begin): 0
  CPU Peak Memory consumed during the train (max-begin): 0
  CPU Total Peak Memory consumed during the train (max): 19411
  epoch=4: train_ppl=tensor(1.0705, device='cuda:0') train_epoch_loss=tensor(0.0681, device='cuda:0')
  100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7/7 [00:27<00:00,  3.92s/it]
  GPU Memory before entering the eval : 1982
  GPU Memory consumed at the end of the eval (end-begin): -66
  GPU Peak Memory consumed during the eval (max-begin): 672
  GPU Total Peak Memory consumed during the eval (max): 2654
  CPU Memory before entering the eval : 19411
  CPU Memory consumed at the end of the eval (end-begin): 0
  CPU Peak Memory consumed during the eval (max-begin): 0
  CPU Total Peak Memory consumed during the eval (max): 19411
  accuracy=100.0
  eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']
  dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']
  ```

### Example of PEFT model inference using πŸ€— Accelerate's Big Model Inferencing capabilities
An example is provided in `~examples/causal_language_modeling/peft_lora_clm_accelerate_big_model_inference.ipynb`. 


## Models support matrix

### Causal Language Modeling
| Model        | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  |
|--------------| ---- | ---- | ---- | ----  |
| GPT-2        | βœ…  | βœ…  | βœ…  | βœ…  |
| Bloom        | βœ…  | βœ…  | βœ…  | βœ…  |
| OPT          | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-Neo      | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-J        | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-NeoX-20B | βœ…  | βœ…  | βœ…  | βœ…  |
| LLaMA        | βœ…  | βœ…  | βœ…  | βœ…  |
| ChatGLM      | βœ…  | βœ…  | βœ…  | βœ…  |

### Conditional Generation
|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ---- |
| T5        | βœ…   | βœ…   | βœ…   | βœ…   |
| BART      | βœ…   | βœ…   | βœ…   | βœ…   |

### Sequence Classification
|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| BERT           | βœ…  | βœ…  | βœ…  | βœ…  |  
| RoBERTa        | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-2          | βœ…  | βœ…  | βœ…  | βœ…  | 
| Bloom          | βœ…  | βœ…  | βœ…  | βœ…  |   
| OPT            | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-Neo        | βœ…  | βœ…  | βœ…  | βœ…  |
| GPT-J          | βœ…  | βœ…  | βœ…  | βœ…  |
| Deberta        | βœ…  |     | βœ…  | βœ…  |     
| Deberta-v2     | βœ…  |     | βœ…  | βœ…  |    

### Token Classification
|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| BERT           | βœ…  | βœ…  |   |   |  
| RoBERTa        | βœ…  | βœ…  |   |   |
| GPT-2          | βœ…  | βœ…  |   |   | 
| Bloom          | βœ…  | βœ…  |   |   |   
| OPT            | βœ…  | βœ…  |   |   |
| GPT-Neo        | βœ…  | βœ…  |   |   |
| GPT-J          | βœ…  | βœ…  |   |   |
| Deberta        | βœ…  |     |   |   | 
| Deberta-v2     | βœ…  |     |   |   |

### Text-to-Image Generation

|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| Stable Diffusion           | βœ…  |   |   |   |  


### Image Classification

|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| ViT           | βœ…  |   |   |   | 
| Swin           | βœ…  |   |   |   | 

### Image to text (Multi-modal models)

|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| Blip-2           | βœ…  |   |   |   | 

___Note that we have tested LoRA for [ViT](https://huggingface.co/docs/transformers/model_doc/vit) and [Swin](https://huggingface.co/docs/transformers/model_doc/swin) for fine-tuning on image classification. However, it should be possible to use LoRA for any compatible model [provided](https://huggingface.co/models?pipeline_tag=image-classification&sort=downloads&search=vit) by πŸ€— Transformers. Check out the respective
examples to learn more. If you run into problems, please open an issue.___

The same principle applies to our [segmentation models](https://huggingface.co/models?pipeline_tag=image-segmentation&sort=downloads) as well. 

### Semantic Segmentation

|   Model         | LoRA | Prefix Tuning  | P-Tuning | Prompt Tuning  | 
| --------- | ---- | ---- | ---- | ----  |
| SegFormer           | βœ…  |   |   |   | 


## Caveats:

1. Below is an example of using PyTorch FSDP for training. However, it doesn't lead to 
any GPU memory savings. Please refer issue [[FSDP] FSDP with CPU offload consumes 1.65X more GPU memory when training models with most of the params frozen](https://github.com/pytorch/pytorch/issues/91165). 

  ```python
  from peft.utils.other import fsdp_auto_wrap_policy

  ...

  if os.environ.get("ACCELERATE_USE_FSDP", None) is not None:
      accelerator.state.fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(model)

  model = accelerator.prepare(model)
  ```

  Example of parameter efficient tuning with [`mt0-xxl`](https://huggingface.co/bigscience/mt0-xxl) base model using πŸ€— Accelerate is provided in `~examples/conditional_generation/peft_lora_seq2seq_accelerate_fsdp.py`. 
  a. First, run `accelerate config --config_file fsdp_config.yaml` and answer the questionnaire. 
  Below are the contents of the config file.
  ```yaml
  command_file: null
  commands: null
  compute_environment: LOCAL_MACHINE
  deepspeed_config: {}
  distributed_type: FSDP
  downcast_bf16: 'no'
  dynamo_backend: 'NO'
  fsdp_config:
    fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
    fsdp_backward_prefetch_policy: BACKWARD_PRE
    fsdp_offload_params: true
    fsdp_sharding_strategy: 1
    fsdp_state_dict_type: FULL_STATE_DICT
    fsdp_transformer_layer_cls_to_wrap: T5Block
  gpu_ids: null
  machine_rank: 0
  main_process_ip: null
  main_process_port: null
  main_training_function: main
  megatron_lm_config: {}
  mixed_precision: 'no'
  num_machines: 1
  num_processes: 2
  rdzv_backend: static
  same_network: true
  tpu_name: null
  tpu_zone: null
  use_cpu: false
  ```
  b. run the below command to launch the example script
  ```bash
  accelerate launch --config_file fsdp_config.yaml examples/peft_lora_seq2seq_accelerate_fsdp.py
  ```

2. When using `P_TUNING` or `PROMPT_TUNING` with `SEQ_2_SEQ` task, remember to remove the `num_virtual_token` virtual prompt predictions from the left side of the model outputs during evaluations. 

3. For encoder-decoder models, `P_TUNING` or `PROMPT_TUNING` doesn't support `generate` functionality of transformers because `generate` strictly requires `decoder_input_ids` but 
`P_TUNING`/`PROMPT_TUNING` appends soft prompt embeddings to `input_embeds` to create
new `input_embeds` to be given to the model. Therefore, `generate` doesn't support this yet.

4. When using ZeRO3 with zero3_init_flag=True, if you find the gpu memory increase with training steps. we might need to set zero3_init_flag=false in accelerate config.yaml. The related issue is [[BUG] memory leak under zero.Init](https://github.com/microsoft/DeepSpeed/issues/2637)

## Backlog:
- [x] Add tests
- [x] Multi Adapter training and inference support
- [x] Add more use cases and examples
- [ ] Explore and possibly integrate `Bottleneck Adapters`, `(IA)^3`, `AdaptionPrompt` ...

## Citing πŸ€— PEFT

If you use πŸ€— PEFT in your publication, please cite it by using the following BibTeX entry.

```bibtex
@Misc{peft,
  title =        {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},
  author =       {Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul},
  howpublished = {\url{https://github.com/huggingface/peft}},
  year =         {2022}
}
```