File size: 17,453 Bytes
ed7a497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import tempfile
import unittest
from dataclasses import dataclass
from typing import Any, Dict, List, Union
import pytest
import torch
from datasets import Audio, DatasetDict, load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
Trainer,
TrainingArguments,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
WhisperProcessor,
WhisperTokenizer,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu
# A full testing suite that tests all the necessary features on GPU. The tests should
# rely on the example scripts to test the features.
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
r"""
Directly copied from:
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
"""
processor: Any
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need different padding methods
# first treat the audio inputs by simply returning torch tensors
input_features = [{"input_features": feature["input_features"]} for feature in features]
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
# get the tokenized label sequences
label_features = [{"input_ids": feature["labels"]} for feature in features]
# pad the labels to max length
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
@require_torch_gpu
@require_bitsandbytes
class PeftInt8GPUExampleTests(unittest.TestCase):
r"""
A single GPU int8 test suite, this will test if training fits correctly on a single GPU device (1x NVIDIA T4 16GB)
using bitsandbytes.
The tests are the following:
- Seq2Seq model training based on:
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb
- Causal LM model training based on:
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb
- Audio model training based on:
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
"""
def setUp(self):
self.seq2seq_model_id = "google/flan-t5-base"
self.causal_lm_model_id = "facebook/opt-6.7b"
self.audio_model_id = "openai/whisper-large"
def tearDown(self):
r"""
Efficient mechanism to free GPU memory after each test. Based on
https://github.com/huggingface/transformers/issues/21094
"""
gc.collect()
torch.cuda.empty_cache()
gc.collect()
@pytest.mark.single_gpu_tests
def test_causal_lm_training(self):
r"""
Test the CausalLM training on a single GPU device. This test is a converted version of
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
`opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
correctly.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
model = AutoModelForCausalLM.from_pretrained(
self.causal_lm_model_id,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
data = load_dataset("ybelkada/english_quotes_copy")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=3,
learning_rate=2e-4,
fp16=True,
logging_steps=1,
output_dir=tmp_dir,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
model.cpu().save_pretrained(tmp_dir)
self.assertTrue("adapter_config.json" in os.listdir(tmp_dir))
self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir))
# assert loss is not None
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
@pytest.mark.multi_gpu_tests
@require_torch_multi_gpu
def test_causal_lm_training_mutli_gpu(self):
r"""
Test the CausalLM training on a multi-GPU device. This test is a converted version of
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
`opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
correctly.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
model = AutoModelForCausalLM.from_pretrained(
self.causal_lm_model_id,
load_in_8bit=True,
device_map="auto",
)
self.assertEqual(set(model.hf_device_map.values()), {0, 1})
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
model = prepare_model_for_int8_training(model)
setattr(model, "model_parallel", True)
setattr(model, "is_parallelizable", True)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
data = load_dataset("Abirate/english_quotes")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=3,
learning_rate=2e-4,
fp16=True,
logging_steps=1,
output_dir=tmp_dir,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
model.cpu().save_pretrained(tmp_dir)
self.assertTrue("adapter_config.json" in os.listdir(tmp_dir))
self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir))
# assert loss is not None
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
@pytest.mark.single_gpu_tests
def test_seq2seq_lm_training_single_gpu(self):
r"""
Test the Seq2SeqLM training on a single GPU device. This test is a converted version of
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
`flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
correctly.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
model = AutoModelForSeq2SeqLM.from_pretrained(
self.seq2seq_model_id,
load_in_8bit=True,
device_map={"": 0},
)
self.assertEqual(set(model.hf_device_map.values()), {0})
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
data = load_dataset("ybelkada/english_quotes_copy")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=3,
learning_rate=2e-4,
fp16=True,
logging_steps=1,
output_dir=tmp_dir,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
model.cpu().save_pretrained(tmp_dir)
self.assertTrue("adapter_config.json" in os.listdir(tmp_dir))
self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir))
# assert loss is not None
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
@pytest.mark.multi_gpu_tests
@require_torch_multi_gpu
def test_seq2seq_lm_training_mutli_gpu(self):
r"""
Test the Seq2SeqLM training on a multi-GPU device. This test is a converted version of
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
`flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
correctly.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
model = AutoModelForSeq2SeqLM.from_pretrained(
self.seq2seq_model_id,
load_in_8bit=True,
device_map="balanced",
)
self.assertEqual(set(model.hf_device_map.values()), {0, 1})
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
data = load_dataset("ybelkada/english_quotes_copy")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
max_steps=3,
learning_rate=2e-4,
fp16=True,
logging_steps=1,
output_dir="outputs",
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
model.cpu().save_pretrained(tmp_dir)
self.assertTrue("adapter_config.json" in os.listdir(tmp_dir))
self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir))
# assert loss is not None
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
@pytest.mark.single_gpu_tests
def test_audio_model_training(self):
r"""
Test the audio model training on a single GPU device. This test is a converted version of
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
"""
with tempfile.TemporaryDirectory() as tmp_dir:
dataset_name = "ybelkada/common_voice_mr_11_0_copy"
task = "transcribe"
language = "Marathi"
common_voice = DatasetDict()
common_voice["train"] = load_dataset(dataset_name, split="train+validation")
common_voice = common_voice.remove_columns(
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]
)
feature_extractor = WhisperFeatureExtractor.from_pretrained(self.audio_model_id)
tokenizer = WhisperTokenizer.from_pretrained(self.audio_model_id, language=language, task=task)
processor = WhisperProcessor.from_pretrained(self.audio_model_id, language=language, task=task)
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
def prepare_dataset(batch):
# load and resample audio data from 48 to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(
audio["array"], sampling_rate=audio["sampling_rate"]
).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch["sentence"]).input_ids
return batch
common_voice = common_voice.map(
prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2
)
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
model = WhisperForConditionalGeneration.from_pretrained(
self.audio_model_id, load_in_8bit=True, device_map="auto"
)
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
model = prepare_model_for_int8_training(model, output_embedding_layer_name="proj_out")
config = LoraConfig(
r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none"
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
training_args = Seq2SeqTrainingArguments(
output_dir=tmp_dir, # change to a repo name of your choice
per_device_train_batch_size=8,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-3,
warmup_steps=2,
max_steps=3,
fp16=True,
per_device_eval_batch_size=8,
generation_max_length=128,
logging_steps=25,
remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
label_names=["labels"], # same reason as above
)
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=common_voice["train"],
data_collator=data_collator,
tokenizer=processor.feature_extractor,
)
trainer.train()
model.cpu().save_pretrained(tmp_dir)
self.assertTrue("adapter_config.json" in os.listdir(tmp_dir))
self.assertTrue("adapter_model.bin" in os.listdir(tmp_dir))
# assert loss is not None
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
|