Spaces:
sonalkum
/
Running on Zero

File size: 41,045 Bytes
be0b943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that checks all docstrings of public objects have an argument section matching their signature.

Use from the root of the repo with:

```bash
python utils/check_docstrings.py
```

for a check that will error in case of inconsistencies (used by `make repo-consistency`).

To auto-fix issues run:

```bash
python utils/check_docstrings.py --fix_and_overwrite
```

which is used by `make fix-copies` (note that this fills what it cans, you might have to manually fill information
like argument descriptions).
"""
import argparse
import ast
import enum
import inspect
import operator as op
import re
from pathlib import Path
from typing import Any, Optional, Tuple, Union

from check_repo import ignore_undocumented

from transformers.utils import direct_transformers_import


PATH_TO_TRANSFORMERS = Path("src").resolve() / "transformers"

# This is to make sure the transformers module imported is the one in the repo.
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)

OPTIONAL_KEYWORD = "*optional*"
# Re pattern that catches args blocks in docstrings (with all variation around the name supported).
_re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$")
# Re pattern that parses the start of an arg block: catches <name> (<description>) in those lines.
_re_parse_arg = re.compile(r"^(\s*)(\S+)\s+\((.+)\)(?:\:|$)")
# Re pattern that parses the end of a description of an arg (catches the default in *optional*, defaults to xxx).
_re_parse_description = re.compile(r"\*optional\*, defaults to (.*)$")


# This is a temporary list of objects to ignore while we progressively fix them. Do not add anything here, fix the
# docstrings instead. If formatting should be ignored for the docstring, you can put a comment # no-format on the
# line before the docstring.
OBJECTS_TO_IGNORE = [
    # Deprecated
    "InputExample",
    "InputFeatures",
    # Signature is *args/**kwargs
    # "PretrainedConfig", #ignored but could be fixed
    # "GenerationConfig", #ignored but could be fixed
    "TFSequenceSummary",
    "TFBertTokenizer",
    "TFGPT2Tokenizer",
    # Missing arguments in the docstring
    "ASTFeatureExtractor",
    "AlbertModel",
    "AlbertTokenizerFast",
    "AlignTextModel",
    "AlignVisionConfig",
    "AudioClassificationPipeline",
    "AutoformerConfig",
    "AutomaticSpeechRecognitionPipeline",
    "AzureOpenAiAgent",
    "BarkCoarseConfig",
    "BarkConfig",
    "BarkFineConfig",
    "BarkSemanticConfig",
    "BartConfig",
    "BartTokenizerFast",
    "BarthezTokenizerFast",
    "BeitModel",
    "BertConfig",
    "BertJapaneseTokenizer",
    "BertModel",
    "BertTokenizerFast",
    "BigBirdConfig",
    "BigBirdForQuestionAnswering",
    "BigBirdModel",
    "BigBirdPegasusConfig",
    "BigBirdTokenizerFast",
    "BitImageProcessor",
    "BlenderbotConfig",
    "BlenderbotSmallConfig",
    "BlenderbotSmallTokenizerFast",
    "BlenderbotTokenizerFast",
    "Blip2QFormerConfig",
    "Blip2VisionConfig",
    "BlipTextConfig",
    "BlipVisionConfig",
    "BloomConfig",
    "BloomTokenizerFast",
    "BridgeTowerTextConfig",
    "BridgeTowerVisionConfig",
    "BrosModel",
    "CamembertConfig",
    "CamembertModel",
    "CamembertTokenizerFast",
    "CanineModel",
    "CanineTokenizer",
    "ChineseCLIPTextModel",
    "ClapTextConfig",
    "ConditionalDetrConfig",
    "ConditionalDetrImageProcessor",
    "ConvBertConfig",
    "ConvBertTokenizerFast",
    "ConvNextConfig",
    "ConvNextV2Config",
    "ConversationalPipeline",
    "CpmAntTokenizer",
    "CvtConfig",
    "CvtModel",
    "DeiTImageProcessor",
    "DPRReaderTokenizer",
    "DPRReaderTokenizerFast",
    "DPTModel",
    "Data2VecAudioConfig",
    "Data2VecTextConfig",
    "Data2VecTextModel",
    "Data2VecVisionModel",
    "DataCollatorForLanguageModeling",
    "DebertaConfig",
    "DebertaV2Config",
    "DebertaV2Tokenizer",
    "DebertaV2TokenizerFast",
    "DecisionTransformerConfig",
    "DeformableDetrConfig",
    "DeformableDetrImageProcessor",
    "DeiTModel",
    "DepthEstimationPipeline",
    "DetaConfig",
    "DetaImageProcessor",
    "DetrConfig",
    "DetrImageProcessor",
    "DinatModel",
    "DistilBertConfig",
    "DistilBertTokenizerFast",
    "DocumentQuestionAnsweringPipeline",
    "DonutSwinModel",
    "EarlyStoppingCallback",
    "EfficientFormerConfig",
    "EfficientFormerImageProcessor",
    "EfficientNetConfig",
    "ElectraConfig",
    "ElectraTokenizerFast",
    "EncoderDecoderModel",
    "EncoderRepetitionPenaltyLogitsProcessor",
    "ErnieMModel",
    "ErnieModel",
    "ErnieMTokenizer",
    "EsmConfig",
    "EsmModel",
    "FlaxAlbertForMaskedLM",
    "FlaxAlbertForMultipleChoice",
    "FlaxAlbertForPreTraining",
    "FlaxAlbertForQuestionAnswering",
    "FlaxAlbertForSequenceClassification",
    "FlaxAlbertForTokenClassification",
    "FlaxAlbertModel",
    "FlaxBartForCausalLM",
    "FlaxBartForConditionalGeneration",
    "FlaxBartForQuestionAnswering",
    "FlaxBartForSequenceClassification",
    "FlaxBartModel",
    "FlaxBeitForImageClassification",
    "FlaxBeitForMaskedImageModeling",
    "FlaxBeitModel",
    "FlaxBertForCausalLM",
    "FlaxBertForMaskedLM",
    "FlaxBertForMultipleChoice",
    "FlaxBertForNextSentencePrediction",
    "FlaxBertForPreTraining",
    "FlaxBertForQuestionAnswering",
    "FlaxBertForSequenceClassification",
    "FlaxBertForTokenClassification",
    "FlaxBertModel",
    "FlaxBigBirdForCausalLM",
    "FlaxBigBirdForMaskedLM",
    "FlaxBigBirdForMultipleChoice",
    "FlaxBigBirdForPreTraining",
    "FlaxBigBirdForQuestionAnswering",
    "FlaxBigBirdForSequenceClassification",
    "FlaxBigBirdForTokenClassification",
    "FlaxBigBirdModel",
    "FlaxBlenderbotForConditionalGeneration",
    "FlaxBlenderbotModel",
    "FlaxBlenderbotSmallForConditionalGeneration",
    "FlaxBlenderbotSmallModel",
    "FlaxBloomForCausalLM",
    "FlaxBloomModel",
    "FlaxCLIPModel",
    "FlaxDistilBertForMaskedLM",
    "FlaxDistilBertForMultipleChoice",
    "FlaxDistilBertForQuestionAnswering",
    "FlaxDistilBertForSequenceClassification",
    "FlaxDistilBertForTokenClassification",
    "FlaxDistilBertModel",
    "FlaxElectraForCausalLM",
    "FlaxElectraForMaskedLM",
    "FlaxElectraForMultipleChoice",
    "FlaxElectraForPreTraining",
    "FlaxElectraForQuestionAnswering",
    "FlaxElectraForSequenceClassification",
    "FlaxElectraForTokenClassification",
    "FlaxElectraModel",
    "FlaxEncoderDecoderModel",
    "FlaxGPT2LMHeadModel",
    "FlaxGPT2Model",
    "FlaxGPTJForCausalLM",
    "FlaxGPTJModel",
    "FlaxGPTNeoForCausalLM",
    "FlaxGPTNeoModel",
    "FlaxLlamaForCausalLM",
    "FlaxLlamaModel",
    "FlaxMBartForConditionalGeneration",
    "FlaxMBartForQuestionAnswering",
    "FlaxMBartForSequenceClassification",
    "FlaxMBartModel",
    "FlaxMarianMTModel",
    "FlaxMarianModel",
    "FlaxOPTForCausalLM",
    "FlaxPegasusForConditionalGeneration",
    "FlaxPegasusModel",
    "FlaxRegNetForImageClassification",
    "FlaxRegNetModel",
    "FlaxResNetForImageClassification",
    "FlaxResNetModel",
    "FlaxRoFormerForMaskedLM",
    "FlaxRoFormerForMultipleChoice",
    "FlaxRoFormerForQuestionAnswering",
    "FlaxRoFormerForSequenceClassification",
    "FlaxRoFormerForTokenClassification",
    "FlaxRoFormerModel",
    "FlaxRobertaForCausalLM",
    "FlaxRobertaForMaskedLM",
    "FlaxRobertaForMultipleChoice",
    "FlaxRobertaForQuestionAnswering",
    "FlaxRobertaForSequenceClassification",
    "FlaxRobertaForTokenClassification",
    "FlaxRobertaModel",
    "FlaxRobertaPreLayerNormForCausalLM",
    "FlaxRobertaPreLayerNormForMaskedLM",
    "FlaxRobertaPreLayerNormForMultipleChoice",
    "FlaxRobertaPreLayerNormForQuestionAnswering",
    "FlaxRobertaPreLayerNormForSequenceClassification",
    "FlaxRobertaPreLayerNormForTokenClassification",
    "FlaxRobertaPreLayerNormModel",
    "FlaxSpeechEncoderDecoderModel",
    "FlaxViTForImageClassification",
    "FlaxViTModel",
    "FlaxVisionEncoderDecoderModel",
    "FlaxVisionTextDualEncoderModel",
    "FlaxWav2Vec2ForCTC",
    "FlaxWav2Vec2ForPreTraining",
    "FlaxWav2Vec2Model",
    "FlaxWhisperForAudioClassification",
    "FlaxWhisperForConditionalGeneration",
    "FlaxWhisperModel",
    "FlaxWhisperTimeStampLogitsProcessor",
    "FlaxXGLMForCausalLM",
    "FlaxXGLMModel",
    "FlaxXLMRobertaForCausalLM",
    "FlaxXLMRobertaForMaskedLM",
    "FlaxXLMRobertaForMultipleChoice",
    "FlaxXLMRobertaForQuestionAnswering",
    "FlaxXLMRobertaForSequenceClassification",
    "FlaxXLMRobertaForTokenClassification",
    "FlaxXLMRobertaModel",
    "FNetConfig",
    "FNetModel",
    "FNetTokenizerFast",
    "FSMTConfig",
    "FeatureExtractionPipeline",
    "FillMaskPipeline",
    "FlaubertConfig",
    "FlavaConfig",
    "FlavaForPreTraining",
    "FlavaImageModel",
    "FlavaImageProcessor",
    "FlavaMultimodalModel",
    "FlavaTextConfig",
    "FlavaTextModel",
    "FocalNetModel",
    "FunnelTokenizerFast",
    "GPTBigCodeConfig",
    "GPTJConfig",
    "GPTNeoXConfig",
    "GPTNeoXJapaneseConfig",
    "GPTNeoXTokenizerFast",
    "GPTSanJapaneseConfig",
    "GitConfig",
    "GitVisionConfig",
    "GraphormerConfig",
    "GroupViTTextConfig",
    "GroupViTVisionConfig",
    "HerbertTokenizerFast",
    "HubertConfig",
    "HubertForCTC",
    "IBertConfig",
    "IBertModel",
    "IdeficsConfig",
    "IdeficsProcessor",
    "ImageClassificationPipeline",
    "ImageGPTConfig",
    "ImageSegmentationPipeline",
    "ImageToImagePipeline",
    "ImageToTextPipeline",
    "InformerConfig",
    "InstructBlipQFormerConfig",
    "JukeboxPriorConfig",
    "JukeboxTokenizer",
    "LEDConfig",
    "LEDTokenizerFast",
    "LayoutLMForQuestionAnswering",
    "LayoutLMTokenizerFast",
    "LayoutLMv2Config",
    "LayoutLMv2ForQuestionAnswering",
    "LayoutLMv2TokenizerFast",
    "LayoutLMv3Config",
    "LayoutLMv3ImageProcessor",
    "LayoutLMv3TokenizerFast",
    "LayoutXLMTokenizerFast",
    "LevitConfig",
    "LiltConfig",
    "LiltModel",
    "LongT5Config",
    "LongformerConfig",
    "LongformerModel",
    "LongformerTokenizerFast",
    "LukeModel",
    "LukeTokenizer",
    "LxmertTokenizerFast",
    "M2M100Config",
    "M2M100Tokenizer",
    "MarkupLMProcessor",
    "MaskGenerationPipeline",
    "MBart50TokenizerFast",
    "MBartConfig",
    "MCTCTFeatureExtractor",
    "MPNetConfig",
    "MPNetModel",
    "MPNetTokenizerFast",
    "MT5Config",
    "MT5TokenizerFast",
    "MarianConfig",
    "MarianTokenizer",
    "MarkupLMConfig",
    "MarkupLMModel",
    "MarkupLMTokenizer",
    "MarkupLMTokenizerFast",
    "Mask2FormerConfig",
    "MaskFormerConfig",
    "MaxTimeCriteria",
    "MegaConfig",
    "MegaModel",
    "MegatronBertConfig",
    "MegatronBertForPreTraining",
    "MegatronBertModel",
    "MobileBertConfig",
    "MobileBertModel",
    "MobileBertTokenizerFast",
    "MobileNetV1ImageProcessor",
    "MobileNetV1Model",
    "MobileNetV2ImageProcessor",
    "MobileNetV2Model",
    "MobileViTModel",
    "MobileViTV2Model",
    "MLukeTokenizer",
    "MraConfig",
    "MusicgenDecoderConfig",
    "MusicgenForConditionalGeneration",
    "MvpConfig",
    "MvpTokenizerFast",
    "MT5Tokenizer",
    "NatModel",
    "NerPipeline",
    "NezhaConfig",
    "NezhaModel",
    "NllbMoeConfig",
    "NllbTokenizer",
    "NllbTokenizerFast",
    "NystromformerConfig",
    "OPTConfig",
    "ObjectDetectionPipeline",
    "OneFormerProcessor",
    "OpenAIGPTTokenizerFast",
    "OpenLlamaConfig",
    "PLBartConfig",
    "PegasusConfig",
    "PegasusTokenizer",
    "PegasusTokenizerFast",
    "PegasusXConfig",
    "PerceiverImageProcessor",
    "PerceiverModel",
    "PerceiverTokenizer",
    "PersimmonConfig",
    "Pipeline",
    "Pix2StructConfig",
    "Pix2StructTextConfig",
    "PLBartTokenizer",
    "Pop2PianoConfig",
    "PreTrainedTokenizer",
    "PreTrainedTokenizerBase",
    "PreTrainedTokenizerFast",
    "PrefixConstrainedLogitsProcessor",
    "ProphetNetConfig",
    "QDQBertConfig",
    "QDQBertModel",
    "QuestionAnsweringPipeline",
    "RagConfig",
    "RagModel",
    "RagRetriever",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
    "RealmConfig",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmTokenizerFast",
    "ReformerConfig",
    "ReformerTokenizerFast",
    "RegNetConfig",
    "RemBertConfig",
    "RemBertModel",
    "RemBertTokenizer",
    "RemBertTokenizerFast",
    "RepetitionPenaltyLogitsProcessor",
    "RetriBertConfig",
    "RetriBertTokenizerFast",
    "RoCBertConfig",
    "RoCBertModel",
    "RoCBertTokenizer",
    "RoFormerConfig",
    "RobertaConfig",
    "RobertaModel",
    "RobertaPreLayerNormConfig",
    "RobertaPreLayerNormModel",
    "RobertaTokenizerFast",
    "SEWConfig",
    "SEWDConfig",
    "SEWDForCTC",
    "SEWForCTC",
    "SamConfig",
    "SamPromptEncoderConfig",
    "SeamlessM4TConfig",  # use of unconventional markdown
    "SeamlessM4Tv2Config",  # use of unconventional markdown
    "Seq2SeqTrainingArguments",
    "SpecialTokensMixin",
    "Speech2Text2Config",
    "Speech2Text2Tokenizer",
    "Speech2TextTokenizer",
    "SpeechEncoderDecoderModel",
    "SpeechT5Config",
    "SpeechT5Model",
    "SplinterConfig",
    "SplinterTokenizerFast",
    "SqueezeBertTokenizerFast",
    "SummarizationPipeline",
    "Swin2SRImageProcessor",
    "Swinv2Model",
    "SwitchTransformersConfig",
    "T5Config",
    "T5Tokenizer",
    "T5TokenizerFast",
    "TableQuestionAnsweringPipeline",
    "TableTransformerConfig",
    "TapasConfig",
    "TapasModel",
    "TapasTokenizer",
    "Text2TextGenerationPipeline",
    "TextClassificationPipeline",
    "TextGenerationPipeline",
    "TFAlbertForMaskedLM",
    "TFAlbertForMultipleChoice",
    "TFAlbertForPreTraining",
    "TFAlbertForQuestionAnswering",
    "TFAlbertForSequenceClassification",
    "TFAlbertForTokenClassification",
    "TFAlbertModel",
    "TFBartForConditionalGeneration",
    "TFBartForSequenceClassification",
    "TFBartModel",
    "TFBertForMaskedLM",
    "TFBertForMultipleChoice",
    "TFBertForNextSentencePrediction",
    "TFBertForPreTraining",
    "TFBertForQuestionAnswering",
    "TFBertForSequenceClassification",
    "TFBertForTokenClassification",
    "TFBertModel",
    "TFBlenderbotForConditionalGeneration",
    "TFBlenderbotModel",
    "TFBlenderbotSmallForConditionalGeneration",
    "TFBlenderbotSmallModel",
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFCLIPModel",
    "TFCTRLForSequenceClassification",
    "TFCTRLLMHeadModel",
    "TFCTRLModel",
    "TFCamembertForCausalLM",
    "TFCamembertForMaskedLM",
    "TFCamembertForMultipleChoice",
    "TFCamembertForQuestionAnswering",
    "TFCamembertForSequenceClassification",
    "TFCamembertForTokenClassification",
    "TFCamembertModel",
    "TFConvBertForMaskedLM",
    "TFConvBertForMultipleChoice",
    "TFConvBertForQuestionAnswering",
    "TFConvBertForSequenceClassification",
    "TFConvBertForTokenClassification",
    "TFConvBertModel",
    "TFConvNextForImageClassification",
    "TFConvNextModel",
    "TFConvNextV2Model",  # Parsing issue. Equivalent to PT ConvNextV2Model, see PR #25558
    "TFConvNextV2ForImageClassification",
    "TFCvtForImageClassification",
    "TFCvtModel",
    "TFDPRReader",
    "TFData2VecVisionForImageClassification",
    "TFData2VecVisionForSemanticSegmentation",
    "TFData2VecVisionModel",
    "TFDebertaForMaskedLM",
    "TFDebertaForQuestionAnswering",
    "TFDebertaForSequenceClassification",
    "TFDebertaForTokenClassification",
    "TFDebertaModel",
    "TFDebertaV2ForMaskedLM",
    "TFDebertaV2ForMultipleChoice",
    "TFDebertaV2ForQuestionAnswering",
    "TFDebertaV2ForSequenceClassification",
    "TFDebertaV2ForTokenClassification",
    "TFDebertaV2Model",
    "TFDeiTForImageClassification",
    "TFDeiTForImageClassificationWithTeacher",
    "TFDeiTForMaskedImageModeling",
    "TFDeiTModel",
    "TFDistilBertForMaskedLM",
    "TFDistilBertForMultipleChoice",
    "TFDistilBertForQuestionAnswering",
    "TFDistilBertForSequenceClassification",
    "TFDistilBertForTokenClassification",
    "TFDistilBertModel",
    "TFEfficientFormerForImageClassification",
    "TFEfficientFormerForImageClassificationWithTeacher",
    "TFEfficientFormerModel",
    "TFElectraForMaskedLM",
    "TFElectraForMultipleChoice",
    "TFElectraForPreTraining",
    "TFElectraForQuestionAnswering",
    "TFElectraForSequenceClassification",
    "TFElectraForTokenClassification",
    "TFElectraModel",
    "TFEncoderDecoderModel",
    "TFEsmForMaskedLM",
    "TFEsmForSequenceClassification",
    "TFEsmForTokenClassification",
    "TFEsmModel",
    "TFFlaubertForMultipleChoice",
    "TFFlaubertForQuestionAnsweringSimple",
    "TFFlaubertForSequenceClassification",
    "TFFlaubertForTokenClassification",
    "TFFlaubertModel",
    "TFFlaubertWithLMHeadModel",
    "TFFunnelBaseModel",
    "TFFunnelForMaskedLM",
    "TFFunnelForMultipleChoice",
    "TFFunnelForPreTraining",
    "TFFunnelForQuestionAnswering",
    "TFFunnelForSequenceClassification",
    "TFFunnelForTokenClassification",
    "TFFunnelModel",
    "TFGPT2DoubleHeadsModel",
    "TFGPT2ForSequenceClassification",
    "TFGPT2LMHeadModel",
    "TFGPT2Model",
    "TFGPTJForCausalLM",
    "TFGPTJForQuestionAnswering",
    "TFGPTJForSequenceClassification",
    "TFGPTJModel",
    "TFGroupViTModel",
    "TFHubertForCTC",
    "TFHubertModel",
    "TFLEDForConditionalGeneration",
    "TFLEDModel",
    "TFLayoutLMForMaskedLM",
    "TFLayoutLMForQuestionAnswering",
    "TFLayoutLMForSequenceClassification",
    "TFLayoutLMForTokenClassification",
    "TFLayoutLMModel",
    "TFLayoutLMv3ForQuestionAnswering",
    "TFLayoutLMv3ForSequenceClassification",
    "TFLayoutLMv3ForTokenClassification",
    "TFLayoutLMv3Model",
    "TFLongformerForMaskedLM",
    "TFLongformerForMultipleChoice",
    "TFLongformerForQuestionAnswering",
    "TFLongformerForSequenceClassification",
    "TFLongformerForTokenClassification",
    "TFLongformerModel",
    "TFLxmertForPreTraining",
    "TFLxmertModel",
    "TFMBartForConditionalGeneration",
    "TFMBartModel",
    "TFMPNetForMaskedLM",
    "TFMPNetForMultipleChoice",
    "TFMPNetForQuestionAnswering",
    "TFMPNetForSequenceClassification",
    "TFMPNetForTokenClassification",
    "TFMPNetModel",
    "TFMarianMTModel",
    "TFMarianModel",
    "TFMobileBertForMaskedLM",
    "TFMobileBertForMultipleChoice",
    "TFMobileBertForNextSentencePrediction",
    "TFMobileBertForPreTraining",
    "TFMobileBertForQuestionAnswering",
    "TFMobileBertForSequenceClassification",
    "TFMobileBertForTokenClassification",
    "TFMobileBertModel",
    "TFMobileViTForImageClassification",
    "TFMobileViTForSemanticSegmentation",
    "TFMobileViTModel",
    "TFOPTForCausalLM",
    "TFOPTModel",
    "TFOpenAIGPTDoubleHeadsModel",
    "TFOpenAIGPTForSequenceClassification",
    "TFOpenAIGPTLMHeadModel",
    "TFOpenAIGPTModel",
    "TFPegasusForConditionalGeneration",
    "TFPegasusModel",
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
    "TFRegNetForImageClassification",
    "TFRegNetModel",
    "TFRemBertForCausalLM",
    "TFRemBertForMaskedLM",
    "TFRemBertForMultipleChoice",
    "TFRemBertForQuestionAnswering",
    "TFRemBertForSequenceClassification",
    "TFRemBertForTokenClassification",
    "TFRemBertModel",
    "TFRepetitionPenaltyLogitsProcessor",
    "TFResNetForImageClassification",
    "TFResNetModel",
    "TFRoFormerForCausalLM",
    "TFRoFormerForMaskedLM",
    "TFRoFormerForMultipleChoice",
    "TFRoFormerForQuestionAnswering",
    "TFRoFormerForSequenceClassification",
    "TFRoFormerForTokenClassification",
    "TFRoFormerModel",
    "TFRobertaForMaskedLM",
    "TFRobertaForMultipleChoice",
    "TFRobertaForQuestionAnswering",
    "TFRobertaForSequenceClassification",
    "TFRobertaForTokenClassification",
    "TFRobertaModel",
    "TFRobertaPreLayerNormForMaskedLM",
    "TFRobertaPreLayerNormForMultipleChoice",
    "TFRobertaPreLayerNormForQuestionAnswering",
    "TFRobertaPreLayerNormForSequenceClassification",
    "TFRobertaPreLayerNormForTokenClassification",
    "TFRobertaPreLayerNormModel",
    "TFSamModel",
    "TFSegformerForImageClassification",
    "TFSegformerForSemanticSegmentation",
    "TFSegformerModel",
    "TFSpeech2TextForConditionalGeneration",
    "TFSpeech2TextModel",
    "TFSwinForImageClassification",
    "TFSwinForMaskedImageModeling",
    "TFSwinModel",
    "TFT5EncoderModel",
    "TFT5ForConditionalGeneration",
    "TFT5Model",
    "TFTapasForMaskedLM",
    "TFTapasForQuestionAnswering",
    "TFTapasForSequenceClassification",
    "TFTapasModel",
    "TFTransfoXLForSequenceClassification",
    "TFTransfoXLLMHeadModel",
    "TFTransfoXLModel",
    "TFViTForImageClassification",
    "TFViTMAEForPreTraining",
    "TFViTMAEModel",
    "TFViTModel",
    "TFVisionEncoderDecoderModel",
    "TFVisionTextDualEncoderModel",
    "TFWav2Vec2ForCTC",
    "TFWav2Vec2Model",
    "TFWhisperForConditionalGeneration",
    "TFWhisperModel",
    "TFXGLMForCausalLM",
    "TFXGLMModel",
    "TFXLMForMultipleChoice",
    "TFXLMForQuestionAnsweringSimple",
    "TFXLMForSequenceClassification",
    "TFXLMForTokenClassification",
    "TFXLMModel",
    "TFXLMRobertaForCausalLM",
    "TFXLMRobertaForMaskedLM",
    "TFXLMRobertaForMultipleChoice",
    "TFXLMRobertaForQuestionAnswering",
    "TFXLMRobertaForSequenceClassification",
    "TFXLMRobertaForTokenClassification",
    "TFXLMRobertaModel",
    "TFXLMWithLMHeadModel",
    "TFXLNetForMultipleChoice",
    "TFXLNetForQuestionAnsweringSimple",
    "TFXLNetForSequenceClassification",
    "TFXLNetForTokenClassification",
    "TFXLNetLMHeadModel",
    "TFXLNetModel",
    "TimeSeriesTransformerConfig",
    "TokenClassificationPipeline",
    "TrOCRConfig",
    "TrainerState",
    "TrainingArguments",
    "TrajectoryTransformerConfig",
    "TranslationPipeline",
    "TvltImageProcessor",
    "UMT5Config",
    "UperNetConfig",
    "UperNetForSemanticSegmentation",
    "ViTHybridImageProcessor",
    "ViTHybridModel",
    "ViTMSNModel",
    "ViTModel",
    "VideoClassificationPipeline",
    "ViltConfig",
    "ViltForImagesAndTextClassification",
    "ViltModel",
    "VisionEncoderDecoderModel",
    "VisionTextDualEncoderModel",
    "VisualBertConfig",
    "VisualBertModel",
    "VisualQuestionAnsweringPipeline",
    "VitMatteForImageMatting",
    "VitsTokenizer",
    "VivitModel",
    "Wav2Vec2BertForCTC",
    "Wav2Vec2CTCTokenizer",
    "Wav2Vec2Config",
    "Wav2Vec2ConformerConfig",
    "Wav2Vec2ConformerForCTC",
    "Wav2Vec2FeatureExtractor",
    "Wav2Vec2PhonemeCTCTokenizer",
    "WavLMConfig",
    "WavLMForCTC",
    "WhisperConfig",
    "WhisperFeatureExtractor",
    "WhisperForAudioClassification",
    "XCLIPTextConfig",
    "XCLIPVisionConfig",
    "XGLMConfig",
    "XGLMModel",
    "XGLMTokenizerFast",
    "XLMConfig",
    "XLMProphetNetConfig",
    "XLMRobertaConfig",
    "XLMRobertaModel",
    "XLMRobertaTokenizerFast",
    "XLMRobertaXLConfig",
    "XLMRobertaXLModel",
    "XLNetConfig",
    "XLNetTokenizerFast",
    "XmodConfig",
    "XmodModel",
    "YolosImageProcessor",
    "YolosModel",
    "YosoConfig",
    "ZeroShotAudioClassificationPipeline",
    "ZeroShotClassificationPipeline",
    "ZeroShotImageClassificationPipeline",
    "ZeroShotObjectDetectionPipeline",
]

# Supported math operations when interpreting the value of defaults.
MATH_OPERATORS = {
    ast.Add: op.add,
    ast.Sub: op.sub,
    ast.Mult: op.mul,
    ast.Div: op.truediv,
    ast.Pow: op.pow,
    ast.BitXor: op.xor,
    ast.USub: op.neg,
}


def find_indent(line: str) -> int:
    """
    Returns the number of spaces that start a line indent.
    """
    search = re.search(r"^(\s*)(?:\S|$)", line)
    if search is None:
        return 0
    return len(search.groups()[0])


def stringify_default(default: Any) -> str:
    """
    Returns the string representation of a default value, as used in docstring: numbers are left as is, all other
    objects are in backtiks.

    Args:
        default (`Any`): The default value to process

    Returns:
        `str`: The string representation of that default.
    """
    if isinstance(default, bool):
        # We need to test for bool first as a bool passes isinstance(xxx, (int, float))
        return f"`{default}`"
    elif isinstance(default, enum.Enum):
        # We need to test for enum first as an enum with int values will pass isinstance(xxx, (int, float))
        return f"`{str(default)}`"
    elif isinstance(default, int):
        return str(default)
    elif isinstance(default, float):
        result = str(default)
        return str(round(default, 2)) if len(result) > 6 else result
    elif isinstance(default, str):
        return str(default) if default.isnumeric() else f'`"{default}"`'
    elif isinstance(default, type):
        return f"`{default.__name__}`"
    else:
        return f"`{default}`"


def eval_math_expression(expression: str) -> Optional[Union[float, int]]:
    # Mainly taken from the excellent https://stackoverflow.com/a/9558001
    """
    Evaluate (safely) a mathematial expression and returns its value.

    Args:
        expression (`str`): The expression to evaluate.

    Returns:
        `Optional[Union[float, int]]`: Returns `None` if the evaluation fails in any way and the value computed
        otherwise.

    Example:

    ```py
    >>> eval_expr('2^6')
    4
    >>> eval_expr('2**6')
    64
    >>> eval_expr('1 + 2*3**(4^5) / (6 + -7)')
    -5.0
    ```
    """
    try:
        return eval_node(ast.parse(expression, mode="eval").body)
    except TypeError:
        return


def eval_node(node):
    if isinstance(node, ast.Num):  # <number>
        return node.n
    elif isinstance(node, ast.BinOp):  # <left> <operator> <right>
        return MATH_OPERATORS[type(node.op)](eval_node(node.left), eval_node(node.right))
    elif isinstance(node, ast.UnaryOp):  # <operator> <operand> e.g., -1
        return MATH_OPERATORS[type(node.op)](eval_node(node.operand))
    else:
        raise TypeError(node)


def replace_default_in_arg_description(description: str, default: Any) -> str:
    """
    Catches the default value in the description of an argument inside a docstring and replaces it by the value passed.

    Args:
        description (`str`): The description of an argument in a docstring to process.
        default (`Any`): The default value that whould be in the docstring of that argument.

    Returns:
       `str`: The description updated with the new default value.
    """
    # Lots of docstrings have `optional` or **opational** instead of *optional* so we do this fix here.
    description = description.replace("`optional`", OPTIONAL_KEYWORD)
    description = description.replace("**optional**", OPTIONAL_KEYWORD)
    if default is inspect._empty:
        # No default, make sure the description doesn't have any either
        idx = description.find(OPTIONAL_KEYWORD)
        if idx != -1:
            description = description[:idx].rstrip()
            if description.endswith(","):
                description = description[:-1].rstrip()
    elif default is None:
        # Default None are not written, we just set `*optional*`. If there is default that is not None specified in the
        # description, we do not erase it (as sometimes we set the default to `None` because the default is a mutable
        # object).
        idx = description.find(OPTIONAL_KEYWORD)
        if idx == -1:
            description = f"{description}, {OPTIONAL_KEYWORD}"
        elif re.search(r"defaults to `?None`?", description) is not None:
            len_optional = len(OPTIONAL_KEYWORD)
            description = description[: idx + len_optional]
    else:
        str_default = None
        # For numbers we may have a default that is given by a math operation (1/255 is really popular). We don't
        # want to replace those by their actual values.
        if isinstance(default, (int, float)) and re.search("defaults to `?(.*?)(?:`|$)", description) is not None:
            # Grab the default and evaluate it.
            current_default = re.search("defaults to `?(.*?)(?:`|$)", description).groups()[0]
            if default == eval_math_expression(current_default):
                try:
                    # If it can be directly converted to the type of the default, it's a simple value
                    str_default = str(type(default)(current_default))
                except Exception:
                    # Otherwise there is a math operator so we add a code block.
                    str_default = f"`{current_default}`"
            elif isinstance(default, enum.Enum) and default.name == current_default.split(".")[-1]:
                # When the default is an Enum (this is often the case for PIL.Image.Resampling), and the docstring
                # matches the enum name, keep the existing docstring rather than clobbering it with the enum value.
                str_default = f"`{current_default}`"

        if str_default is None:
            str_default = stringify_default(default)
        # Make sure default match
        if OPTIONAL_KEYWORD not in description:
            description = f"{description}, {OPTIONAL_KEYWORD}, defaults to {str_default}"
        elif _re_parse_description.search(description) is None:
            idx = description.find(OPTIONAL_KEYWORD)
            len_optional = len(OPTIONAL_KEYWORD)
            description = f"{description[:idx + len_optional]}, defaults to {str_default}"
        else:
            description = _re_parse_description.sub(rf"*optional*, defaults to {str_default}", description)

    return description


def get_default_description(arg: inspect.Parameter) -> str:
    """
    Builds a default description for a parameter that was not documented.

    Args:
        arg (`inspect.Parameter`): The argument in the signature to generate a description for.

    Returns:
        `str`: The description.
    """
    if arg.annotation is inspect._empty:
        arg_type = "<fill_type>"
    elif hasattr(arg.annotation, "__name__"):
        arg_type = arg.annotation.__name__
    else:
        arg_type = str(arg.annotation)

    if arg.default is inspect._empty:
        return f"`{arg_type}`"
    elif arg.default is None:
        return f"`{arg_type}`, {OPTIONAL_KEYWORD}"
    else:
        str_default = stringify_default(arg.default)
        return f"`{arg_type}`, {OPTIONAL_KEYWORD}, defaults to {str_default}"


def find_source_file(obj: Any) -> Path:
    """
    Finds the source file of an object.

    Args:
        obj (`Any`): The object whose source file we are looking for.

    Returns:
        `Path`: The source file.
    """
    module = obj.__module__
    obj_file = PATH_TO_TRANSFORMERS
    for part in module.split(".")[1:]:
        obj_file = obj_file / part
    return obj_file.with_suffix(".py")


def match_docstring_with_signature(obj: Any) -> Optional[Tuple[str, str]]:
    """
    Matches the docstring of an object with its signature.

    Args:
        obj (`Any`): The object to process.

    Returns:
        `Optional[Tuple[str, str]]`: Returns `None` if there is no docstring or no parameters documented in the
        docstring, otherwise returns a tuple of two strings: the current documentation of the arguments in the
        docstring and the one matched with the signature.
    """
    if len(getattr(obj, "__doc__", "")) == 0:
        # Nothing to do, there is no docstring.
        return

    # Read the docstring in the source code to see if there is a special command to ignore this object.
    try:
        source, _ = inspect.getsourcelines(obj)
    except OSError:
        source = []

    idx = 0
    while idx < len(source) and '"""' not in source[idx]:
        idx += 1

    ignore_order = False
    if idx < len(source):
        line_before_docstring = source[idx - 1]
        if re.search(r"^\s*#\s*no-format\s*$", line_before_docstring):
            # This object is ignored
            return
        elif re.search(r"^\s*#\s*ignore-order\s*$", line_before_docstring):
            ignore_order = True

    # Read the signature
    signature = inspect.signature(obj).parameters

    obj_doc_lines = obj.__doc__.split("\n")
    # Get to the line where we start documenting arguments
    idx = 0
    while idx < len(obj_doc_lines) and _re_args.search(obj_doc_lines[idx]) is None:
        idx += 1

    if idx == len(obj_doc_lines):
        # Nothing to do, no parameters are documented.
        return

    indent = find_indent(obj_doc_lines[idx])
    arguments = {}
    current_arg = None
    idx += 1
    start_idx = idx
    # Keep going until the arg section is finished (nonempty line at the same indent level) or the end of the docstring.
    while idx < len(obj_doc_lines) and (
        len(obj_doc_lines[idx].strip()) == 0 or find_indent(obj_doc_lines[idx]) > indent
    ):
        if find_indent(obj_doc_lines[idx]) == indent + 4:
            # New argument -> let's generate the proper doc for it
            re_search_arg = _re_parse_arg.search(obj_doc_lines[idx])
            if re_search_arg is not None:
                _, name, description = re_search_arg.groups()
                current_arg = name
                if name in signature:
                    default = signature[name].default
                    if signature[name].kind is inspect._ParameterKind.VAR_KEYWORD:
                        default = None
                    new_description = replace_default_in_arg_description(description, default)
                else:
                    new_description = description
                init_doc = _re_parse_arg.sub(rf"\1\2 ({new_description}):", obj_doc_lines[idx])
                arguments[current_arg] = [init_doc]
        elif current_arg is not None:
            arguments[current_arg].append(obj_doc_lines[idx])

        idx += 1

    # We went too far by one (perhaps more if there are a lot of new lines)
    idx -= 1
    while len(obj_doc_lines[idx].strip()) == 0:
        arguments[current_arg] = arguments[current_arg][:-1]
        idx -= 1
    # And we went too far by one again.
    idx += 1

    old_doc_arg = "\n".join(obj_doc_lines[start_idx:idx])

    old_arguments = list(arguments.keys())
    arguments = {name: "\n".join(doc) for name, doc in arguments.items()}
    # Add missing arguments with a template
    for name in set(signature.keys()) - set(arguments.keys()):
        arg = signature[name]
        # We ignore private arguments or *args/**kwargs (unless they are documented by the user)
        if name.startswith("_") or arg.kind in [
            inspect._ParameterKind.VAR_KEYWORD,
            inspect._ParameterKind.VAR_POSITIONAL,
        ]:
            arguments[name] = ""
        else:
            arg_desc = get_default_description(arg)
            arguments[name] = " " * (indent + 4) + f"{name} ({arg_desc}): <fill_docstring>"

    # Arguments are sorted by the order in the signature unless a special comment is put.
    if ignore_order:
        new_param_docs = [arguments[name] for name in old_arguments if name in signature]
        missing = set(signature.keys()) - set(old_arguments)
        new_param_docs.extend([arguments[name] for name in missing if len(arguments[name]) > 0])
    else:
        new_param_docs = [arguments[name] for name in signature.keys() if len(arguments[name]) > 0]
    new_doc_arg = "\n".join(new_param_docs)

    return old_doc_arg, new_doc_arg


def fix_docstring(obj: Any, old_doc_args: str, new_doc_args: str):
    """
    Fixes the docstring of an object by replacing its arguments documentaiton by the one matched with the signature.

    Args:
        obj (`Any`):
            The object whose dostring we are fixing.
        old_doc_args (`str`):
            The current documentation of the parameters of `obj` in the docstring (as returned by
            `match_docstring_with_signature`).
        new_doc_args (`str`):
            The documentation of the parameters of `obj` matched with its signature (as returned by
            `match_docstring_with_signature`).
    """
    # Read the docstring in the source code and make sure we have the right part of the docstring
    source, line_number = inspect.getsourcelines(obj)

    # Get to the line where we start documenting arguments
    idx = 0
    while idx < len(source) and _re_args.search(source[idx]) is None:
        idx += 1

    if idx == len(source):
        # Args are not defined in the docstring of this object
        return

    # Get to the line where we stop documenting arguments
    indent = find_indent(source[idx])
    idx += 1
    start_idx = idx
    while idx < len(source) and (len(source[idx].strip()) == 0 or find_indent(source[idx]) > indent):
        idx += 1

    idx -= 1
    while len(source[idx].strip()) == 0:
        idx -= 1
    idx += 1

    if "".join(source[start_idx:idx])[:-1] != old_doc_args:
        # Args are not fully defined in the docstring of this object
        return

    obj_file = find_source_file(obj)
    with open(obj_file, "r", encoding="utf-8") as f:
        content = f.read()

    # Replace content
    lines = content.split("\n")
    lines = lines[: line_number + start_idx - 1] + [new_doc_args] + lines[line_number + idx - 1 :]

    print(f"Fixing the docstring of {obj.__name__} in {obj_file}.")
    with open(obj_file, "w", encoding="utf-8") as f:
        f.write("\n".join(lines))


def check_docstrings(overwrite: bool = False):
    """
    Check docstrings of all public objects that are callables and are documented.

    Args:
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether to fix inconsistencies or not.
    """
    failures = []
    hard_failures = []
    to_clean = []
    for name in dir(transformers):
        # Skip objects that are private or not documented.
        if name.startswith("_") or ignore_undocumented(name) or name in OBJECTS_TO_IGNORE:
            continue

        obj = getattr(transformers, name)
        if not callable(obj) or not isinstance(obj, type) or getattr(obj, "__doc__", None) is None:
            continue

        # Check docstring
        try:
            result = match_docstring_with_signature(obj)
            if result is not None:
                old_doc, new_doc = result
            else:
                old_doc, new_doc = None, None
        except Exception as e:
            print(e)
            hard_failures.append(name)
            continue
        if old_doc != new_doc:
            if overwrite:
                fix_docstring(obj, old_doc, new_doc)
            else:
                failures.append(name)
        elif not overwrite and new_doc is not None and ("<fill_type>" in new_doc or "<fill_docstring>" in new_doc):
            to_clean.append(name)

    # Deal with errors
    error_message = ""
    if len(hard_failures) > 0:
        error_message += (
            "The argument part of the docstrings of the following objects could not be processed, check they are "
            "properly formatted."
        )
        error_message += "\n" + "\n".join([f"- {name}" for name in hard_failures])
    if len(failures) > 0:
        error_message += (
            "The following objects docstrings do not match their signature. Run `make fix-copies` to fix this. "
            "In some cases, this error may be raised incorrectly by the docstring checker. If you think this is the "
            "case, you can manually check the docstrings and then add the object name to `OBJECTS_TO_IGNORE` in "
            "`utils/check_docstrings.py`."
        )
        error_message += "\n" + "\n".join([f"- {name}" for name in failures])
    if len(to_clean) > 0:
        error_message += (
            "The following objects docstrings contain templates you need to fix: search for `<fill_type>` or "
            "`<fill_docstring>`."
        )
        error_message += "\n" + "\n".join([f"- {name}" for name in to_clean])

    if len(error_message) > 0:
        error_message = "There was at least one problem when checking docstrings of public objects.\n" + error_message
        raise ValueError(error_message)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    check_docstrings(overwrite=args.fix_and_overwrite)