Spaces:
sonalkum
/
Running on Zero

File size: 3,471 Bytes
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
from transformers import AutoModelForVision2Seq, AutoProcessor

from peft import LoraConfig, get_peft_model


# Let's define the LoraConfig
config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
)

# We load our model and processor using `transformers`
model = AutoModelForVision2Seq.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0})
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")

# Get our peft model and print the number of trainable parameters
model = get_peft_model(model, config)
model.print_trainable_parameters()

# Let's load the dataset here!
dataset = load_dataset("ybelkada/football-dataset", split="train")


class ImageCaptioningDataset(Dataset):
    def __init__(self, dataset, processor):
        self.dataset = dataset
        self.processor = processor

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        item = self.dataset[idx]
        encoding = self.processor(images=item["image"], padding="max_length", return_tensors="pt")
        # remove batch dimension
        encoding = {k: v.squeeze() for k, v in encoding.items()}
        encoding["text"] = item["text"]
        return encoding


def collator(batch):
    # pad the input_ids and attention_mask
    processed_batch = {}
    for key in batch[0].keys():
        if key != "text":
            processed_batch[key] = torch.stack([example[key] for example in batch])
        else:
            text_inputs = processor.tokenizer(
                [example["text"] for example in batch], padding=True, return_tensors="pt"
            )
            processed_batch["input_ids"] = text_inputs["input_ids"]
            processed_batch["attention_mask"] = text_inputs["attention_mask"]
    return processed_batch


train_dataset = ImageCaptioningDataset(dataset, processor)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=2, collate_fn=collator)

optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)

device = "cuda" if torch.cuda.is_available() else "cpu"

model.train()

for epoch in range(50):
    print("Epoch:", epoch)
    for idx, batch in enumerate(train_dataloader):
        input_ids = batch.pop("input_ids").to(device)
        pixel_values = batch.pop("pixel_values").to(device, torch.float16)

        outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)

        loss = outputs.loss

        print("Loss:", loss.item())

        loss.backward()

        optimizer.step()
        optimizer.zero_grad()

        if idx % 10 == 0:
            generated_output = model.generate(pixel_values=pixel_values)
            print(processor.batch_decode(generated_output, skip_special_tokens=True))