|
import argparse |
|
import json |
|
import os |
|
import shutil |
|
from collections import defaultdict |
|
from tempfile import TemporaryDirectory |
|
from typing import Dict, List, Optional, Set, Tuple |
|
|
|
import torch |
|
|
|
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download |
|
from huggingface_hub.file_download import repo_folder_name |
|
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file |
|
|
|
|
|
COMMIT_DESCRIPTION = """ |
|
This is an automated PR created with https://huggingface.co/spaces/safetensors/convert |
|
|
|
This new file is equivalent to `pytorch_model.bin` but safe in the sense that |
|
no arbitrary code can be put into it. |
|
|
|
These files also happen to load much faster than their pytorch counterpart: |
|
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb |
|
|
|
The widgets on your model page will run using this model even if this is not merged |
|
making sure the file actually works. |
|
|
|
If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions |
|
|
|
Feel free to ignore this PR. |
|
""" |
|
|
|
ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]] |
|
|
|
|
|
def _remove_duplicate_names( |
|
state_dict: Dict[str, torch.Tensor], |
|
*, |
|
preferred_names: List[str] = None, |
|
discard_names: List[str] = None, |
|
) -> Dict[str, List[str]]: |
|
if preferred_names is None: |
|
preferred_names = [] |
|
preferred_names = set(preferred_names) |
|
if discard_names is None: |
|
discard_names = [] |
|
discard_names = set(discard_names) |
|
|
|
shareds = _find_shared_tensors(state_dict) |
|
to_remove = defaultdict(list) |
|
for shared in shareds: |
|
complete_names = set([name for name in shared if _is_complete(state_dict[name])]) |
|
if not complete_names: |
|
if len(shared) == 1: |
|
|
|
name = list(shared)[0] |
|
state_dict[name] = state_dict[name].clone() |
|
complete_names = {name} |
|
else: |
|
raise RuntimeError( |
|
f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue." |
|
) |
|
|
|
keep_name = sorted(list(complete_names))[0] |
|
|
|
|
|
|
|
|
|
|
|
preferred = complete_names.difference(discard_names) |
|
if preferred: |
|
keep_name = sorted(list(preferred))[0] |
|
|
|
if preferred_names: |
|
preferred = preferred_names.intersection(complete_names) |
|
if preferred: |
|
keep_name = sorted(list(preferred))[0] |
|
for name in sorted(shared): |
|
if name != keep_name: |
|
to_remove[keep_name].append(name) |
|
return to_remove |
|
|
|
|
|
def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]: |
|
try: |
|
import json |
|
|
|
import transformers |
|
|
|
config_filename = hf_hub_download( |
|
model_id, revision=revision, filename="config.json", token=token, cache_dir=folder |
|
) |
|
with open(config_filename, "r") as f: |
|
config = json.load(f) |
|
architecture = config["architectures"][0] |
|
|
|
class_ = getattr(transformers, architecture) |
|
|
|
|
|
discard_names = getattr(class_, "_tied_weights_keys", []) |
|
|
|
except Exception: |
|
discard_names = [] |
|
return discard_names |
|
|
|
|
|
class AlreadyExists(Exception): |
|
pass |
|
|
|
|
|
def check_file_size(sf_filename: str, pt_filename: str): |
|
sf_size = os.stat(sf_filename).st_size |
|
pt_size = os.stat(pt_filename).st_size |
|
|
|
if (sf_size - pt_size) / pt_size > 0.01: |
|
raise RuntimeError( |
|
f"""The file size different is more than 1%: |
|
- {sf_filename}: {sf_size} |
|
- {pt_filename}: {pt_size} |
|
""" |
|
) |
|
|
|
|
|
def rename(pt_filename: str) -> str: |
|
filename, ext = os.path.splitext(pt_filename) |
|
local = f"{filename}.safetensors" |
|
local = local.replace("pytorch_model", "model") |
|
return local |
|
|
|
|
|
def convert_multi( |
|
model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str] |
|
) -> ConversionResult: |
|
filename = hf_hub_download( |
|
repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder |
|
) |
|
with open(filename, "r") as f: |
|
data = json.load(f) |
|
|
|
filenames = set(data["weight_map"].values()) |
|
local_filenames = [] |
|
for filename in filenames: |
|
pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder) |
|
|
|
sf_filename = rename(pt_filename) |
|
sf_filename = os.path.join(folder, sf_filename) |
|
convert_file(pt_filename, sf_filename, discard_names=discard_names) |
|
local_filenames.append(sf_filename) |
|
|
|
index = os.path.join(folder, "model.safetensors.index.json") |
|
with open(index, "w") as f: |
|
newdata = {k: v for k, v in data.items()} |
|
newmap = {k: rename(v) for k, v in data["weight_map"].items()} |
|
newdata["weight_map"] = newmap |
|
json.dump(newdata, f, indent=4) |
|
local_filenames.append(index) |
|
|
|
operations = [ |
|
CommitOperationAdd(path_in_repo=os.path.basename(local), path_or_fileobj=local) for local in local_filenames |
|
] |
|
errors: List[Tuple[str, "Exception"]] = [] |
|
|
|
return operations, errors |
|
|
|
|
|
def convert_single( |
|
model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str] |
|
) -> ConversionResult: |
|
pt_filename = hf_hub_download( |
|
repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder |
|
) |
|
|
|
sf_name = "model.safetensors" |
|
sf_filename = os.path.join(folder, sf_name) |
|
convert_file(pt_filename, sf_filename, discard_names) |
|
operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)] |
|
errors: List[Tuple[str, "Exception"]] = [] |
|
return operations, errors |
|
|
|
|
|
def convert_file( |
|
pt_filename: str, |
|
sf_filename: str, |
|
discard_names: List[str], |
|
): |
|
loaded = torch.load(pt_filename, map_location="cpu") |
|
|
|
wts = loaded['model'].copy() |
|
|
|
for key in list(wts.keys()): |
|
if 'Qformer.' in key: |
|
wts[key.replace('Qformer.','model.Qformer.')] = wts[key] |
|
print(wts[key]) |
|
del wts[key] |
|
elif 'query_tokens' in key: |
|
wts[key.replace('query_tokens','model.query_tokens')] = wts[key] |
|
print(wts[key]) |
|
del wts[key] |
|
elif 'ln_vision' in key: |
|
wts[key.replace('ln_vision.','model.qformer_proj_norm.')] = wts[key] |
|
print(wts[key]) |
|
del wts[key] |
|
else: |
|
del wts[key] |
|
|
|
if "model" in loaded: |
|
loaded = wts |
|
|
|
to_removes = _remove_duplicate_names(loaded, discard_names=discard_names) |
|
|
|
metadata = {"format": "pt"} |
|
for kept_name, to_remove_group in to_removes.items(): |
|
for to_remove in to_remove_group: |
|
if to_remove not in metadata: |
|
metadata[to_remove] = kept_name |
|
del loaded[to_remove] |
|
|
|
loaded = {k: v.contiguous() for k, v in loaded.items()} |
|
|
|
dirname = "/fs/nexus-projects/brain_project/acl_sk_24/GAMA//train_script" |
|
os.makedirs(dirname, exist_ok=True) |
|
save_file(loaded, sf_filename, metadata=metadata) |
|
check_file_size(sf_filename, pt_filename) |
|
reloaded = load_file(sf_filename) |
|
for k in loaded: |
|
pt_tensor = loaded[k] |
|
sf_tensor = reloaded[k] |
|
if not torch.equal(pt_tensor, sf_tensor): |
|
raise RuntimeError(f"The output tensors do not match for key {k}") |
|
|
|
|
|
def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str: |
|
errors = [] |
|
for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]: |
|
pt_set = set(pt_infos[key]) |
|
sf_set = set(sf_infos[key]) |
|
|
|
pt_only = pt_set - sf_set |
|
sf_only = sf_set - pt_set |
|
|
|
if pt_only: |
|
errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings") |
|
if sf_only: |
|
errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings") |
|
return "\n".join(errors) |
|
|
|
|
|
def convert_generic( |
|
model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str] |
|
) -> ConversionResult: |
|
operations = [] |
|
errors = [] |
|
|
|
extensions = set([".bin", ".ckpt"]) |
|
for filename in filenames: |
|
prefix, ext = os.path.splitext(filename) |
|
if ext in extensions: |
|
pt_filename = hf_hub_download( |
|
model_id, revision=revision, filename=filename, token=token, cache_dir=folder |
|
) |
|
dirname, raw_filename = os.path.split(filename) |
|
if raw_filename == "pytorch_model.bin": |
|
|
|
|
|
sf_in_repo = os.path.join(dirname, "model.safetensors") |
|
else: |
|
sf_in_repo = f"{prefix}.safetensors" |
|
sf_filename = os.path.join(folder, sf_in_repo) |
|
try: |
|
convert_file(pt_filename, sf_filename, discard_names=[]) |
|
operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename)) |
|
except Exception as e: |
|
errors.append((pt_filename, e)) |
|
return operations, errors |
|
|
|
|
|
convert_file("/fs/nexus-projects/brain_project/acl_sk_24/LAVIS/lavis/output/BLIP2/Pretrain_stage2/20240601232/checkpoint_57.pth", "/fs/nexus-projects/brain_project/acl_sk_24/GAMA//train_script/Llama-2-7b-chat-hf-qformer/model-00004-of-00002.safetensors", None) |