Spaces:
sonalkum
/
Running on Zero

GAMA-IT / peft /tests /test_common_gpu.py
sonalkum's picture
run
2ba374e
raw
history blame
5.66 kB
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import pytest
import torch
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, WhisperForConditionalGeneration
from peft import LoraConfig, PeftModel, get_peft_model
from peft.import_utils import is_bnb_available
from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu
if is_bnb_available():
from peft.tuners.lora import Linear8bitLt
@require_torch_gpu
class PeftGPUCommonTests(unittest.TestCase):
r"""
A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc.
"""
def setUp(self):
self.seq2seq_model_id = "google/flan-t5-base"
self.causal_lm_model_id = "facebook/opt-350m"
self.audio_model_id = "openai/whisper-large"
self.device = torch.device("cuda:0")
def tearDown(self):
r"""
Efficient mechanism to free GPU memory after each test. Based on
https://github.com/huggingface/transformers/issues/21094
"""
gc.collect()
torch.cuda.empty_cache()
gc.collect()
@require_bitsandbytes
def test_lora_bnb_quantization(self):
r"""
Test that tests if the 8bit quantization using LoRA works as expected
"""
whisper_8bit = WhisperForConditionalGeneration.from_pretrained(
self.audio_model_id,
device_map="auto",
load_in_8bit=True,
)
opt_8bit = AutoModelForCausalLM.from_pretrained(
self.causal_lm_model_id,
device_map="auto",
load_in_8bit=True,
)
flan_8bit = AutoModelForSeq2SeqLM.from_pretrained(
self.seq2seq_model_id,
device_map="auto",
load_in_8bit=True,
)
flan_lora_config = LoraConfig(
r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM"
)
opt_lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
flan_8bit = get_peft_model(flan_8bit, flan_lora_config)
self.assertTrue(isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt))
opt_8bit = get_peft_model(opt_8bit, opt_lora_config)
self.assertTrue(isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt))
whisper_8bit = get_peft_model(whisper_8bit, config)
self.assertTrue(
isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt)
)
@pytest.mark.multi_gpu_tests
@require_torch_multi_gpu
def test_lora_causal_lm_mutli_gpu_inference(self):
r"""
Test if LORA can be used for inference on multiple GPUs.
"""
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced")
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
self.assertEqual(set(model.hf_device_map.values()), {0, 1})
model = get_peft_model(model, lora_config)
self.assertTrue(isinstance(model, PeftModel))
dummy_input = "This is a dummy input:"
input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device)
# this should work without any problem
_ = model.generate(input_ids=input_ids)
@require_torch_multi_gpu
@pytest.mark.multi_gpu_tests
@require_bitsandbytes
def test_lora_seq2seq_lm_mutli_gpu_inference(self):
r"""
Test if LORA can be used for inference on multiple GPUs - 8bit version.
"""
lora_config = LoraConfig(
r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM"
)
model = AutoModelForSeq2SeqLM.from_pretrained(self.seq2seq_model_id, device_map="balanced", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
self.assertEqual(set(model.hf_device_map.values()), {0, 1})
model = get_peft_model(model, lora_config)
self.assertTrue(isinstance(model, PeftModel))
self.assertTrue(isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt))
dummy_input = "This is a dummy input:"
input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device)
# this should work without any problem
_ = model.generate(input_ids=input_ids)