# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import random from pathlib import Path from transformers.testing_utils import ( is_pipeline_test, require_decord, require_pytesseract, require_timm, require_torch, require_torch_or_tf, require_vision, ) from transformers.utils import direct_transformers_import, logging from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests from .pipelines.test_pipelines_conversational import ConversationalPipelineTests from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests from .pipelines.test_pipelines_question_answering import QAPipelineTests from .pipelines.test_pipelines_summarization import SummarizationPipelineTests from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests from .pipelines.test_pipelines_translation import TranslationPipelineTests from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests pipeline_test_mapping = { "audio-classification": {"test": AudioClassificationPipelineTests}, "automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests}, "conversational": {"test": ConversationalPipelineTests}, "depth-estimation": {"test": DepthEstimationPipelineTests}, "document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests}, "feature-extraction": {"test": FeatureExtractionPipelineTests}, "fill-mask": {"test": FillMaskPipelineTests}, "image-classification": {"test": ImageClassificationPipelineTests}, "image-segmentation": {"test": ImageSegmentationPipelineTests}, "image-to-text": {"test": ImageToTextPipelineTests}, "object-detection": {"test": ObjectDetectionPipelineTests}, "question-answering": {"test": QAPipelineTests}, "summarization": {"test": SummarizationPipelineTests}, "table-question-answering": {"test": TQAPipelineTests}, "text2text-generation": {"test": Text2TextGenerationPipelineTests}, "text-classification": {"test": TextClassificationPipelineTests}, "text-generation": {"test": TextGenerationPipelineTests}, "token-classification": {"test": TokenClassificationPipelineTests}, "translation": {"test": TranslationPipelineTests}, "video-classification": {"test": VideoClassificationPipelineTests}, "visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests}, "zero-shot": {"test": ZeroShotClassificationPipelineTests}, "zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests}, "zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests}, "zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests}, } for task, task_info in pipeline_test_mapping.items(): test = task_info["test"] task_info["mapping"] = { "pt": getattr(test, "model_mapping", None), "tf": getattr(test, "tf_model_mapping", None), } TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json") with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp: tiny_model_summary = json.load(fp) PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers") # Dynamically import the Transformers module to grab the attribute classes of the processor form their names. transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS) logger = logging.get_logger(__name__) class PipelineTesterMixin: model_tester = None pipeline_model_mapping = None supported_frameworks = ["pt", "tf"] def run_task_tests(self, task): """Run pipeline tests for a specific `task` Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. """ if task not in self.pipeline_model_mapping: self.skipTest( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in " f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`." ) model_architectures = self.pipeline_model_mapping[task] if not isinstance(model_architectures, tuple): model_architectures = (model_architectures,) if not isinstance(model_architectures, tuple): raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.") for model_architecture in model_architectures: model_arch_name = model_architecture.__name__ # Get the canonical name for _prefix in ["Flax", "TF"]: if model_arch_name.startswith(_prefix): model_arch_name = model_arch_name[len(_prefix) :] break tokenizer_names = [] processor_names = [] commit = None if model_arch_name in tiny_model_summary: tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"] processor_names = tiny_model_summary[model_arch_name]["processor_classes"] commit = tiny_model_summary[model_arch_name]["sha"] # Adding `None` (if empty) so we can generate tests tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names processor_names = [None] if len(processor_names) == 0 else processor_names repo_name = f"tiny-random-{model_arch_name}" self.run_model_pipeline_tests( task, repo_name, model_architecture, tokenizer_names, processor_names, commit ) def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names, commit): """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. repo_name (`str`): A model repository id on the Hub. model_architecture (`type`): A subclass of `PretrainedModel` or `PretrainedModel`. tokenizer_names (`List[str]`): A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. processor_names (`List[str]`): A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`. """ # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and # `run_pipeline_test`. pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__ for tokenizer_name in tokenizer_names: for processor_name in processor_names: if self.is_pipeline_test_to_skip( pipeline_test_class_name, model_architecture.config_class, model_architecture, tokenizer_name, processor_name, ): logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is " f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer " f"`{tokenizer_name}` | processor `{processor_name}`." ) continue self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name, commit) def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name, commit): """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name The model will be loaded from a model repository on the Hub. Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. repo_name (`str`): A model repository id on the Hub. model_architecture (`type`): A subclass of `PretrainedModel` or `PretrainedModel`. tokenizer_name (`str`): The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. processor_name (`str`): The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`. """ repo_id = f"hf-internal-testing/{repo_name}" tokenizer = None if tokenizer_name is not None: tokenizer_class = getattr(transformers_module, tokenizer_name) tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit) processor = None if processor_name is not None: processor_class = getattr(transformers_module, processor_name) # If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail. try: processor = processor_class.from_pretrained(repo_id, revision=commit) except Exception: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the " f"processor from `{repo_id}` with `{processor_name}`." ) return # TODO: Maybe not upload such problematic tiny models to Hub. if tokenizer is None and processor is None: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load " f"any tokenizer / processor from `{repo_id}`." ) return # TODO: We should check if a model file is on the Hub repo. instead. try: model = model_architecture.from_pretrained(repo_id, revision=commit) except Exception: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load " f"the model from `{repo_id}` with `{model_architecture}`." ) return # validate validate_test_components(self, task, model, tokenizer, processor) if hasattr(model, "eval"): model = model.eval() # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and # `run_pipeline_test`. task_test = pipeline_test_mapping[task]["test"]() pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor) if pipeline is None: # The test can disable itself, but it should be very marginal # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist) logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the " "pipeline for testing." ) return task_test.run_pipeline_test(pipeline, examples) def run_batch_test(pipeline, examples): # Need to copy because `Conversation` are stateful if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None: return # No batching for this and it's OK # 10 examples with batch size 4 means there needs to be a unfinished batch # which is important for the unbatcher def data(n): for _ in range(n): # Need to copy because Conversation object is mutated yield copy.deepcopy(random.choice(examples)) out = [] for item in pipeline(data(10), batch_size=4): out.append(item) self.assertEqual(len(out), 10) run_batch_test(pipeline, examples) @is_pipeline_test @require_torch def test_pipeline_audio_classification(self): self.run_task_tests(task="audio-classification") @is_pipeline_test def test_pipeline_automatic_speech_recognition(self): self.run_task_tests(task="automatic-speech-recognition") @is_pipeline_test def test_pipeline_conversational(self): self.run_task_tests(task="conversational") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_depth_estimation(self): self.run_task_tests(task="depth-estimation") @is_pipeline_test @require_pytesseract @require_torch @require_vision def test_pipeline_document_question_answering(self): self.run_task_tests(task="document-question-answering") @is_pipeline_test def test_pipeline_feature_extraction(self): self.run_task_tests(task="feature-extraction") @is_pipeline_test def test_pipeline_fill_mask(self): self.run_task_tests(task="fill-mask") @is_pipeline_test @require_torch_or_tf @require_vision def test_pipeline_image_classification(self): self.run_task_tests(task="image-classification") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_image_segmentation(self): self.run_task_tests(task="image-segmentation") @is_pipeline_test @require_vision def test_pipeline_image_to_text(self): self.run_task_tests(task="image-to-text") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_object_detection(self): self.run_task_tests(task="object-detection") @is_pipeline_test def test_pipeline_question_answering(self): self.run_task_tests(task="question-answering") @is_pipeline_test def test_pipeline_summarization(self): self.run_task_tests(task="summarization") @is_pipeline_test def test_pipeline_table_question_answering(self): self.run_task_tests(task="table-question-answering") @is_pipeline_test def test_pipeline_text2text_generation(self): self.run_task_tests(task="text2text-generation") @is_pipeline_test def test_pipeline_text_classification(self): self.run_task_tests(task="text-classification") @is_pipeline_test @require_torch_or_tf def test_pipeline_text_generation(self): self.run_task_tests(task="text-generation") @is_pipeline_test def test_pipeline_token_classification(self): self.run_task_tests(task="token-classification") @is_pipeline_test def test_pipeline_translation(self): self.run_task_tests(task="translation") @is_pipeline_test @require_torch_or_tf @require_vision @require_decord def test_pipeline_video_classification(self): self.run_task_tests(task="video-classification") @is_pipeline_test @require_torch @require_vision def test_pipeline_visual_question_answering(self): self.run_task_tests(task="visual-question-answering") @is_pipeline_test def test_pipeline_zero_shot(self): self.run_task_tests(task="zero-shot") @is_pipeline_test @require_torch def test_pipeline_zero_shot_audio_classification(self): self.run_task_tests(task="zero-shot-audio-classification") @is_pipeline_test @require_vision def test_pipeline_zero_shot_image_classification(self): self.run_task_tests(task="zero-shot-image-classification") @is_pipeline_test @require_vision @require_torch def test_pipeline_zero_shot_object_detection(self): self.run_task_tests(task="zero-shot-object-detection") def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return False def validate_test_components(test_case, task, model, tokenizer, processor): # TODO: Move this to tiny model creation script # head-specific (within a model type) necessary changes to the config # 1. for `BlenderbotForCausalLM` if model.__class__.__name__ == "BlenderbotForCausalLM": model.config.encoder_no_repeat_ngram_size = 0 # TODO: Change the tiny model creation script: don't create models with problematic tokenizers # Avoid `IndexError` in embedding layers CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"] if tokenizer is not None: config_vocab_size = getattr(model.config, "vocab_size", None) # For CLIP-like models if config_vocab_size is None and hasattr(model.config, "text_config"): config_vocab_size = getattr(model.config.text_config, "vocab_size", None) if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE: raise ValueError( "Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`." )