Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchaudio | |
from einops import rearrange | |
import gradio as gr | |
import spaces | |
import os | |
import uuid | |
# Importing the model-related functions | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
# Load the model outside of the GPU-decorated function | |
def load_model(): | |
print("Loading model...") | |
model, model_config = get_pretrained_model("sonalkum/synthio-stable-audio-open") | |
print("Model loaded successfully.") | |
return model, model_config | |
# Pre-load the model to avoid multiprocessing issues | |
model, model_config = load_model() | |
# Function to set up, generate, and process the audio | |
# Allocate GPU only when this function is called | |
def generate_audio(prompt, seconds_total=10, steps=100, cfg_scale=7): | |
print(f"Prompt received: {prompt}") | |
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Fetch the Hugging Face token from the environment variable | |
hf_token = os.getenv('HF_TOKEN') | |
print(f"Hugging Face token: {hf_token}") | |
# Use pre-loaded model and configuration | |
# model, model_config = load_model() | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") | |
model.to(device) | |
print("Model moved to device.") | |
# Set up text and timing conditioning | |
conditioning = [{ | |
"prompt": prompt, | |
"seconds_start": 0, | |
"seconds_total": seconds_total | |
}] | |
print(f"Conditioning: {conditioning}") | |
# Generate stereo audio | |
print("Generating audio...") | |
output = generate_diffusion_cond( | |
model, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
conditioning=conditioning, | |
sample_size=sample_size, | |
sigma_min=0.3, | |
sigma_max=500, | |
sampler_type="dpmpp-3m-sde", | |
device=device | |
) | |
print("Audio generated.") | |
# Rearrange audio batch to a single sequence | |
output = rearrange(output, "b d n -> d (b n)") | |
print("Audio rearranged.") | |
# Peak normalize, clip, convert to int16 | |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
print("Audio normalized and converted.") | |
# Generate a unique filename for the output | |
unique_filename = f"output_{uuid.uuid4().hex}.wav" | |
print(f"Saving audio to file: {unique_filename}") | |
# Save to file | |
torchaudio.save(unique_filename, output, sample_rate) | |
print(f"Audio saved: {unique_filename}") | |
# Return the path to the generated audio file | |
return unique_filename | |
# Setting up the Gradio Interface | |
paper_link = "https://arxiv.org/pdf/2410.02056" | |
paper_text = "Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data" | |
interface = gr.Interface( | |
fn=generate_audio, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"), | |
gr.Slider(0, 10, value=5, label="Duration in Seconds"), | |
gr.Slider(10, 250, value=150, step=10, label="Number of Diffusion Steps"), | |
gr.Slider(1, 10, value=7, step=0.1, label="CFG Scale") | |
], | |
outputs=gr.Audio(type="filepath", label="Generated Audio"), | |
title="Synthio Stable Audio Generator", | |
description="A text-to-audio diffusion model (based on the Stable Audio DiT architecture) for generating variable length synthetic audios from text prompts at 44.1kHz.<br>"+ | |
"This model was developed as part of the paper: " + f"<a href='{paper_link}'>{paper_text}</a> <br>") | |
# Launch the Interface | |
interface.launch() |