rich-text-to-image / sample.py
Songwei Ge
demo!
4c022fe
raw
history blame
5.01 kB
import os
import json
import time
import argparse
import imageio
import torch
import numpy as np
from torchvision import transforms
from models.region_diffusion import RegionDiffusion
from utils.attention_utils import get_token_maps
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
get_attention_control_input, get_gradient_guidance_input
def main(args, param):
# Create the folder to store outputs.
run_dir = args.run_dir
os.makedirs(args.run_dir, exist_ok=True)
# Load region diffusion model.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RegionDiffusion(device)
# parse json to span attributes
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
param['text_input'])
# create control input for region diffusion
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
model, base_text_prompt, style_text_prompts, footnote_text_prompts,
footnote_target_tokens, color_text_prompts, color_names)
# create control input for cross attention
text_format_dict = get_attention_control_input(
model, base_tokens, size_text_prompts_and_sizes)
# create control input for region guidance
text_format_dict, color_target_token_ids = get_gradient_guidance_input(
model, base_tokens, color_text_prompts, color_rgbs, text_format_dict)
height = param['height']
width = param['width']
seed = param['noise_index']
negative_text = param['negative_prompt']
seed_everything(seed)
# get token maps from plain text to image generation.
begin_time = time.time()
if model.attention_maps is None:
model.register_evaluation_hooks()
else:
model.reset_attention_maps()
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
height=height, width=width, num_inference_steps=param['steps'],
guidance_scale=param['guidance_weight'])
fn_base = os.path.join(run_dir, 'seed%d_plain.png' % (seed))
imageio.imwrite(fn_base, plain_img[0])
print('time lapses to get attention maps: %.4f' % (time.time()-begin_time))
color_obj_masks = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed)
model.masks = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens)
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True)
for color_obj_mask in color_obj_masks]
text_format_dict['color_obj_atten'] = color_obj_masks
model.remove_evaluation_hooks()
# generate image from rich text
begin_time = time.time()
seed_everything(seed)
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
height=height, width=width, num_inference_steps=param['steps'],
guidance_scale=param['guidance_weight'], use_grad_guidance=use_grad_guidance,
text_format_dict=text_format_dict)
print('time lapses to generate image from rich text: %.4f' %
(time.time()-begin_time))
fn_style = os.path.join(run_dir, 'seed%d_rich.png' % (seed))
imageio.imwrite(fn_style, rich_img[0])
# imageio.imwrite(fn_cat, np.concatenate([img[0], rich_img[0]], 1))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--run_dir', type=str, default='results/release/debug')
parser.add_argument('--height', type=int, default=512)
parser.add_argument('--width', type=int, default=512)
parser.add_argument('--seed', type=int, default=6)
parser.add_argument('--sample_steps', type=int, default=41)
parser.add_argument('--rich_text_json', type=str,
default='{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. There are palm trees in the background."}]}')
parser.add_argument('--negative_prompt', type=str, default='')
parser.add_argument('--guidance_weight', type=float, default=8.5)
args = parser.parse_args()
param = {
'text_input': json.loads(args.rich_text_json),
'height': args.height,
'width': args.width,
'guidance_weight': args.guidance_weight,
'steps': args.sample_steps,
'noise_index': args.seed,
'negative_prompt': args.negative_prompt,
}
main(args, param)