Spaces:
Runtime error
Runtime error
import numpy as np | |
import os | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import torch | |
import torchvision | |
from pathlib import Path | |
import skimage | |
from skimage.morphology import erosion, square | |
def split_attention_maps_over_steps(attention_maps): | |
r"""Function for splitting attention maps over steps. | |
Args: | |
attention_maps (dict): Dictionary of attention maps. | |
sampler_order (int): Order of the sampler. | |
""" | |
# This function splits attention maps into unconditional and conditional score and over steps | |
attention_maps_cond = dict() # Maps corresponding to conditional score | |
attention_maps_uncond = dict() # Maps corresponding to unconditional score | |
for layer in attention_maps.keys(): | |
for step_num in range(len(attention_maps[layer])): | |
if step_num not in attention_maps_cond: | |
attention_maps_cond[step_num] = dict() | |
attention_maps_uncond[step_num] = dict() | |
attention_maps_uncond[step_num].update( | |
{layer: attention_maps[layer][step_num][:1]}) | |
attention_maps_cond[step_num].update( | |
{layer: attention_maps[layer][step_num][1:2]}) | |
return attention_maps_cond, attention_maps_uncond | |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None): | |
atten_names = ['presoftmax', 'postsoftmax', 'postsoftmax_erosion'] | |
for i, (attn_map, obj_token) in enumerate(zip(atten_map_list, obj_tokens)): | |
n_obj = len(attn_map) | |
plt.figure() | |
plt.clf() | |
fig, axs = plt.subplots( | |
ncols=n_obj+1, gridspec_kw=dict(width_ratios=[1 for _ in range(n_obj)]+[0.1])) | |
fig.set_figheight(3) | |
fig.set_figwidth(3*n_obj+0.1) | |
cmap = plt.get_cmap('OrRd') | |
vmax = 0 | |
vmin = 1 | |
for tid in range(n_obj): | |
attention_map_cur = attn_map[tid] | |
vmax = max(vmax, float(attention_map_cur.max())) | |
vmin = min(vmin, float(attention_map_cur.min())) | |
for tid in range(n_obj): | |
sns.heatmap( | |
attn_map[tid][0], annot=False, cbar=False, ax=axs[tid], | |
cmap=cmap, vmin=vmin, vmax=vmax | |
) | |
axs[tid].set_axis_off() | |
if tokens_vis is not None: | |
if tid == n_obj-1: | |
axs_xlabel = 'other tokens' | |
else: | |
axs_xlabel = '' | |
for token_id in obj_tokens[tid]: | |
axs_xlabel += tokens_vis[token_id.item() - | |
1][:-len('</w>')] | |
axs[tid].set_title(axs_xlabel) | |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) | |
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) | |
fig.colorbar(sm, cax=axs[-1]) | |
fig.tight_layout() | |
plt.savefig(os.path.join( | |
save_dir, 'token_mapes_seed%d_%s.png' % (seed, atten_names[i])), dpi=100) | |
plt.close('all') | |
def get_token_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None, | |
preprocess=False): | |
r"""Function to visualize attention maps. | |
Args: | |
save_dir (str): Path to save attention maps | |
batch_size (int): Batch size | |
sampler_order (int): Sampler order | |
""" | |
# Split attention maps over steps | |
attention_maps_cond, _ = split_attention_maps_over_steps( | |
attention_maps | |
) | |
selected_layers = [ | |
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2', | |
'down_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
'down_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
'down_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
'mid_block.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2' | |
] | |
nsteps = len(attention_maps_cond) | |
hw_ori = width * height | |
attention_maps = [] | |
for obj_token in obj_tokens: | |
attention_maps.append([]) | |
for step_num in range(nsteps): | |
attention_maps_cur = attention_maps_cond[step_num] | |
for layer in attention_maps_cur.keys(): | |
if step_num < 10 or layer not in selected_layers: | |
continue | |
attention_ind = attention_maps_cur[layer].cpu() | |
# Attention maps are of shape [batch_size, nkeys, 77] | |
# since they are averaged out while collecting from hooks to save memory. | |
# Now split the heads from batch dimension | |
bs, hw, nclip = attention_ind.shape | |
down_ratio = np.sqrt(hw_ori // hw) | |
width_cur = int(width // down_ratio) | |
height_cur = int(height // down_ratio) | |
attention_ind = attention_ind.reshape( | |
bs, height_cur, width_cur, nclip) | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_token[0] == -1: | |
attention_map_prev = torch.stack( | |
[attention_maps[i][-1] for i in range(obj_id)]).sum(0) | |
attention_maps[obj_id].append( | |
attention_map_prev.max()-attention_map_prev) | |
else: | |
obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[ | |
0].permute([3, 0, 1, 2]) | |
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width), | |
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True) | |
attention_maps[obj_id].append(obj_attention_map) | |
# average attention maps over steps | |
attention_maps_averaged = [] | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_id == len(obj_tokens) - 1: | |
attention_maps_averaged.append( | |
torch.cat(attention_maps[obj_id]).mean(0)) | |
else: | |
attention_maps_averaged.append( | |
torch.cat(attention_maps[obj_id]).mean(0)) | |
# normalize attention maps into [0, 1] | |
attention_maps_averaged_normalized = [] | |
attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0) | |
for obj_id, obj_token in enumerate(obj_tokens): | |
attention_maps_averaged_normalized.append( | |
attention_maps_averaged[obj_id]/attention_maps_averaged_sum) | |
# softmax | |
attention_maps_averaged_normalized = ( | |
torch.cat(attention_maps_averaged)/0.001).softmax(0) | |
attention_maps_averaged_normalized = [ | |
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])] | |
if preprocess: | |
# it is possible to preprocess the attention maps here | |
selem = square(5) | |
attention_maps_averaged_eroded = [erosion(skimage.img_as_float( | |
map[0].numpy()*255), selem) for map in attention_maps_averaged_normalized[:2]] | |
attention_maps_averaged_eroded = [(torch.from_numpy(map).unsqueeze( | |
0)/255. > 0.8).float() for map in attention_maps_averaged_eroded] | |
attention_maps_averaged_eroded.append( | |
1 - torch.cat(attention_maps_averaged_eroded).sum(0, True)) | |
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized, | |
attention_maps_averaged_eroded], obj_tokens, save_dir, seed, tokens_vis) | |
attention_maps_averaged_eroded = [attn_mask.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_eroded] | |
return attention_maps_averaged_eroded | |
else: | |
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized], | |
obj_tokens, save_dir, seed, tokens_vis) | |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized] | |
return attention_maps_averaged_normalized | |