Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.embeddings import ImagePositionalEmbeddings | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
class Transformer2DModelOutput(BaseOutput): | |
""" | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions | |
for the unnoised latent pixels. | |
""" | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class Transformer2DModel(ModelMixin, ConfigMixin): | |
""" | |
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual | |
embeddings) inputs. | |
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard | |
transformer action. Finally, reshape to image. | |
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional | |
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict | |
classes of unnoised image. | |
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised | |
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input and output. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of context dimensions to use. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
self.is_input_continuous = in_channels is not None | |
self.is_input_vectorized = num_vector_embeds is not None | |
if self.is_input_continuous and self.is_input_vectorized: | |
raise ValueError( | |
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" | |
" sure that either `in_channels` or `num_vector_embeds` is None." | |
) | |
elif not self.is_input_continuous and not self.is_input_vectorized: | |
raise ValueError( | |
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make" | |
" sure that either `in_channels` or `num_vector_embeds` is not None." | |
) | |
# 2. Define input layers | |
if self.is_input_continuous: | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" | |
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" | |
self.height = sample_size | |
self.width = sample_size | |
self.num_vector_embeds = num_vector_embeds | |
self.num_latent_pixels = self.height * self.width | |
self.latent_image_embedding = ImagePositionalEmbeddings( | |
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width | |
) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if self.is_input_continuous: | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d( | |
inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
self.norm_out = nn.LayerNorm(inner_dim) | |
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) | |
def _set_attention_slice(self, slice_size): | |
for block in self.transformer_blocks: | |
block._set_attention_slice(slice_size) | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, | |
text_format_dict={}, return_dict: bool = True): | |
""" | |
Args: | |
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. | |
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input | |
hidden_states | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.long`, *optional*): | |
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] | |
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample | |
tensor. | |
""" | |
# 1. Input | |
if self.is_input_continuous: | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute( | |
0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute( | |
0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
elif self.is_input_vectorized: | |
hidden_states = self.latent_image_embedding(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep, | |
text_format_dict=text_format_dict) | |
# 3. Output | |
if self.is_input_continuous: | |
if not self.use_linear_projection: | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute( | |
0, 3, 1, 2).contiguous() | |
) | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute( | |
0, 3, 1, 2).contiguous() | |
) | |
output = hidden_states + residual | |
elif self.is_input_vectorized: | |
hidden_states = self.norm_out(hidden_states) | |
logits = self.out(hidden_states) | |
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels) | |
logits = logits.permute(0, 2, 1) | |
# log(p(x_0)) | |
output = F.log_softmax(logits.double(), dim=1).float() | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
for block in self.transformer_blocks: | |
block._set_use_memory_efficient_attention_xformers( | |
use_memory_efficient_attention_xformers) | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted | |
to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
Uses three q, k, v linear layers to compute attention. | |
Parameters: | |
channels (`int`): The number of channels in the input and output. | |
num_head_channels (`int`, *optional*): | |
The number of channels in each head. If None, then `num_heads` = 1. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm. | |
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by. | |
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
num_head_channels: Optional[int] = None, | |
norm_num_groups: int = 32, | |
rescale_output_factor: float = 1.0, | |
eps: float = 1e-5, | |
): | |
super().__init__() | |
self.channels = channels | |
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 | |
self.num_head_size = num_head_channels | |
self.group_norm = nn.GroupNorm( | |
num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True) | |
# define q,k,v as linear layers | |
self.query = nn.Linear(channels, channels) | |
self.key = nn.Linear(channels, channels) | |
self.value = nn.Linear(channels, channels) | |
self.rescale_output_factor = rescale_output_factor | |
self.proj_attn = nn.Linear(channels, channels, 1) | |
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: | |
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) | |
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) | |
new_projection = projection.view( | |
new_projection_shape).permute(0, 2, 1, 3) | |
return new_projection | |
def forward(self, hidden_states): | |
residual = hidden_states | |
batch, channel, height, width = hidden_states.shape | |
# norm | |
hidden_states = self.group_norm(hidden_states) | |
hidden_states = hidden_states.view( | |
batch, channel, height * width).transpose(1, 2) | |
# proj to q, k, v | |
query_proj = self.query(hidden_states) | |
key_proj = self.key(hidden_states) | |
value_proj = self.value(hidden_states) | |
scale = 1 / math.sqrt(self.channels / self.num_heads) | |
# get scores | |
if self.num_heads > 1: | |
query_states = self.transpose_for_scores(query_proj) | |
key_states = self.transpose_for_scores(key_proj) | |
value_states = self.transpose_for_scores(value_proj) | |
# TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors? | |
# or reformulate this into a 3D problem? | |
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum | |
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS | |
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0 | |
attention_scores = torch.matmul( | |
query_states, key_states.transpose(-1, -2)) * scale | |
else: | |
query_states, key_states, value_states = query_proj, key_proj, value_proj | |
attention_scores = torch.baddbmm( | |
torch.empty( | |
query_states.shape[0], | |
query_states.shape[1], | |
key_states.shape[1], | |
dtype=query_states.dtype, | |
device=query_states.device, | |
), | |
query_states, | |
key_states.transpose(-1, -2), | |
beta=0, | |
alpha=scale, | |
) | |
attention_probs = torch.softmax( | |
attention_scores.float(), dim=-1).type(attention_scores.dtype) | |
# compute attention output | |
if self.num_heads > 1: | |
# TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors? | |
# or reformulate this into a 3D problem? | |
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum | |
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS | |
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0 | |
hidden_states = torch.matmul(attention_probs, value_states) | |
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() | |
new_hidden_states_shape = hidden_states.size()[ | |
:-2] + (self.channels,) | |
hidden_states = hidden_states.view(new_hidden_states_shape) | |
else: | |
hidden_states = torch.bmm(attention_probs, value_states) | |
# compute next hidden_states | |
hidden_states = self.proj_attn(hidden_states) | |
hidden_states = hidden_states.transpose( | |
-1, -2).reshape(batch, channel, height, width) | |
# res connect and rescale | |
hidden_states = (hidden_states + residual) / self.rescale_output_factor | |
return hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.attn1 = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
) # is a self-attention | |
self.ff = FeedForward(dim, dropout=dropout, | |
activation_fn=activation_fn) | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
) # is self-attn if context is none | |
# layer norms | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
# if xformers is installed try to use memory_efficient_attention by default | |
if is_xformers_available(): | |
try: | |
self._set_use_memory_efficient_attention_xformers(True) | |
except Exception as e: | |
warnings.warn( | |
"Could not enable memory efficient attention. Make sure xformers is installed" | |
f" correctly and a GPU is available: {e}" | |
) | |
def _set_attention_slice(self, slice_size): | |
self.attn1._slice_size = slice_size | |
self.attn2._slice_size = slice_size | |
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
if not is_xformers_available(): | |
print("Here is how to install it") | |
raise ModuleNotFoundError( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers", | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
" available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
def forward(self, hidden_states, context=None, timestep=None, text_format_dict={}): | |
# 1. Self-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1( | |
hidden_states) | |
) | |
if self.only_cross_attention: | |
attn_out, _ = self.attn1( | |
norm_hidden_states, context, text_format_dict=text_format_dict) + hidden_states | |
hidden_states = attn_out + hidden_states | |
else: | |
attn_out, _ = self.attn1(norm_hidden_states) | |
hidden_states = attn_out + hidden_states | |
# 2. Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2( | |
hidden_states) | |
) | |
attn_out, _ = self.attn2( | |
norm_hidden_states, context=context, text_format_dict=text_format_dict) | |
hidden_states = attn_out + hidden_states | |
# 3. Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the context. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
self.is_cross_attn = cross_attention_dim is not None | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, | |
head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape( | |
batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, | |
head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape( | |
batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def reshape_batch_dim_to_heads_and_average(self, tensor): | |
batch_size, seq_len, seq_len2 = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, | |
head_size, seq_len, seq_len2) | |
return tensor.mean(1) | |
def forward(self, hidden_states, context=None, mask=None, text_format_dict={}): | |
batch_size, sequence_length, _ = hidden_states.shape | |
query = self.to_q(hidden_states) | |
context = context if context is not None else hidden_states | |
key = self.to_k(context) | |
value = self.to_v(context) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers( | |
query, key, value) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
# only this attention function is used | |
hidden_states, attn_probs = self._attention( | |
query, key, value, **text_format_dict) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states, attn_probs | |
def _qk(self, query, key): | |
return torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], | |
dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
def _attention(self, query, key, value, word_pos=None, font_size=None, | |
**kwargs): | |
attention_scores = self._qk(query, key) | |
# Font size: | |
if self.is_cross_attn and word_pos is not None and font_size is not None: | |
assert key.shape[1] == 77 | |
attention_score_exp = attention_scores.exp() | |
font_size_abs, font_size_sign = font_size.abs(), font_size.sign() | |
attention_score_exp[:, :, word_pos] = attention_score_exp[:, :, word_pos].clone( | |
)*font_size_abs | |
attention_probs = attention_score_exp / \ | |
attention_score_exp.sum(-1, True) | |
attention_probs[:, :, word_pos] *= font_size_sign | |
else: | |
attention_probs = attention_scores.softmax(dim=-1) | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
attention_probs = self.reshape_batch_dim_to_heads_and_average( | |
attention_probs) | |
return hidden_states, attention_probs | |
def _memory_efficient_attention_xformers(self, query, key, value): | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=None) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "geglu": | |
geglu = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
geglu = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(geglu) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out)) | |
def forward(self, hidden_states): | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
# feedforward | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def gelu(self, gate): | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class ApproximateGELU(nn.Module): | |
""" | |
The approximate form of Gaussian Error Linear Unit (GELU) | |
For more details, see section 2: https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, x): | |
x = self.proj(x) | |
return x * torch.sigmoid(1.702 * x) | |
class AdaLayerNorm(nn.Module): | |
""" | |
Norm layer modified to incorporate timestep embeddings. | |
""" | |
def __init__(self, embedding_dim, num_embeddings): | |
super().__init__() | |
self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) | |
def forward(self, x, timestep): | |
emb = self.linear(self.silu(self.emb(timestep))) | |
scale, shift = torch.chunk(emb, 2) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class DualTransformer2DModel(nn.Module): | |
""" | |
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input and output. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of context dimensions to use. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
): | |
super().__init__() | |
self.transformers = nn.ModuleList( | |
[ | |
Transformer2DModel( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
in_channels=in_channels, | |
num_layers=num_layers, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_bias=attention_bias, | |
sample_size=sample_size, | |
num_vector_embeds=num_vector_embeds, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
) | |
for _ in range(2) | |
] | |
) | |
# Variables that can be set by a pipeline: | |
# The ratio of transformer1 to transformer2's output states to be combined during inference | |
self.mix_ratio = 0.5 | |
# The shape of `encoder_hidden_states` is expected to be | |
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` | |
self.condition_lengths = [77, 257] | |
# Which transformer to use to encode which condition. | |
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` | |
self.transformer_index_for_condition = [1, 0] | |
def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True): | |
""" | |
Args: | |
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. | |
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input | |
hidden_states | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.long`, *optional*): | |
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] | |
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample | |
tensor. | |
""" | |
input_states = hidden_states | |
encoded_states = [] | |
tokens_start = 0 | |
for i in range(2): | |
# for each of the two transformers, pass the corresponding condition tokens | |
condition_state = encoder_hidden_states[:, | |
tokens_start: tokens_start + self.condition_lengths[i]] | |
transformer_index = self.transformer_index_for_condition[i] | |
encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[ | |
0 | |
] | |
encoded_states.append(encoded_state - input_states) | |
tokens_start += self.condition_lengths[i] | |
output_states = encoded_states[0] * self.mix_ratio + \ | |
encoded_states[1] * (1 - self.mix_ratio) | |
output_states = output_states + input_states | |
if not return_dict: | |
return (output_states,) | |
return Transformer2DModelOutput(sample=output_states) | |
def _set_attention_slice(self, slice_size): | |
for transformer in self.transformers: | |
transformer._set_attention_slice(slice_size) | |
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
for transformer in self.transformers: | |
transformer._set_use_memory_efficient_attention_xformers( | |
use_memory_efficient_attention_xformers) | |