import torch import numpy as np from utils import get_device, config DEVICE = get_device() def feature_ref_loader(feature_ref_file_name, num_ref=5000): print("Feature Ref Loader load: ", feature_ref_file_name) load_ref_data = torch.load(feature_ref_file_name, map_location=DEVICE) # cpu load_ref_data = load_ref_data.to(DEVICE) feature_ref = load_ref_data[np.random.permutation(load_ref_data.shape[0])][ :num_ref ].to(DEVICE) return feature_ref feature_two_sample_tester_ref = feature_ref_loader("./feature_ref_for_test.pt")