|
import os |
|
import json |
|
|
|
import fire |
|
import numpy as np |
|
from scipy import sparse |
|
|
|
from sklearn.model_selection import PredefinedSplit, GridSearchCV |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
|
def _load_split(data_dir, source, split, n=np.inf): |
|
path = os.path.join(data_dir, f'{source}.{split}.jsonl') |
|
texts = [] |
|
for i, line in enumerate(open(path)): |
|
if i >= n: |
|
break |
|
texts.append(json.loads(line)['text']) |
|
return texts |
|
|
|
def load_split(data_dir, source, split, n=np.inf): |
|
webtext = _load_split(data_dir, 'webtext', split, n=n//2) |
|
gen = _load_split(data_dir, source, split, n=n//2) |
|
texts = webtext+gen |
|
labels = [0]*len(webtext)+[1]*len(gen) |
|
return texts, labels |
|
|
|
def main(data_dir, log_dir, source='xl-1542M-k40', n_train=500000, n_valid=10000, n_jobs=None, verbose=False): |
|
train_texts, train_labels = load_split(data_dir, source, 'train', n=n_train) |
|
valid_texts, valid_labels = load_split(data_dir, source, 'valid', n=n_valid) |
|
test_texts, test_labels = load_split(data_dir, source, 'test') |
|
|
|
vect = TfidfVectorizer(ngram_range=(1, 2), min_df=5, max_features=2**21) |
|
train_features = vect.fit_transform(train_texts) |
|
valid_features = vect.transform(valid_texts) |
|
test_features = vect.transform(test_texts) |
|
|
|
model = LogisticRegression(solver='liblinear') |
|
params = {'C': [1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64]} |
|
split = PredefinedSplit([-1]*n_train+[0]*n_valid) |
|
search = GridSearchCV(model, params, cv=split, n_jobs=n_jobs, verbose=verbose, refit=False) |
|
search.fit(sparse.vstack([train_features, valid_features]), train_labels+valid_labels) |
|
model = model.set_params(**search.best_params_) |
|
model.fit(train_features, train_labels) |
|
valid_accuracy = model.score(valid_features, valid_labels)*100. |
|
test_accuracy = model.score(test_features, test_labels)*100. |
|
data = { |
|
'source':source, |
|
'n_train':n_train, |
|
'valid_accuracy':valid_accuracy, |
|
'test_accuracy':test_accuracy |
|
} |
|
print(data) |
|
json.dump(data, open(os.path.join(log_dir, f'{source}.json'), 'w')) |
|
|
|
if __name__ == '__main__': |
|
fire.Fire(main) |