File size: 3,125 Bytes
42b0b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import torch
import numpy as np
from . import util
from .body import Body
from .hand import Hand
from annotator.util import annotator_ckpts_path


body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"


class OpenposeDetector:
    def __init__(self):
        body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth")
        hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth")

        if not os.path.exists(hand_modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(body_model_path, model_dir=annotator_ckpts_path)
            load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path)

        self.body_estimation = Body(body_modelpath)
        self.hand_estimation = Hand(hand_modelpath)

    def __call__(self, oriImg, hand=False):
        oriImg = oriImg[:, :, ::-1].copy()
        with torch.no_grad():
            candidate, subset = self.body_estimation(oriImg)
            canvas = np.zeros_like(oriImg)
            canvas = util.draw_bodypose(canvas, candidate, subset)
            if hand:
                hands_list = util.handDetect(candidate, subset, oriImg)
                all_hand_peaks = []
                for x, y, w, is_left in hands_list:
                    peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
                    peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
                    peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
                    all_hand_peaks.append(peaks)
                canvas = util.draw_handpose(canvas, all_hand_peaks)
            return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())


class VisconetDetector(OpenposeDetector):
    def __init__(self):
        super().__init__()

    def __call__(self, oriImg):
        oriImg = oriImg[:, :, ::-1].copy()
        with torch.no_grad():
            candidate, subset = self.body_estimation(oriImg)
            canvas = util.draw_bodypose(np.zeros_like(oriImg), candidate, subset, stickwidth=1, circlewidth=2)
            # detect hand
            hands_list = util.handDetect(candidate, subset, oriImg)

            all_hand_peaks = []
            for x, y, w, is_left in hands_list:

                peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
                peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
                peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
                all_hand_peaks.append(peaks)

            canvas = util.draw_handpose(canvas, all_hand_peaks,stickwidth=1)
            return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())