Spaces:
Sleeping
Sleeping
File size: 4,502 Bytes
42b0b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
model:
target: visconet.visconet.ViscoNetLDM
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
control_key: "hint"
control_crossattn_key: "styles"
mask_key: "human_mask"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
only_mid_control: False
control_cond_config:
target: visconet.modules.ProjectLocalStyle
#target: visconet.modules.ClipImageEncoder
# params:
# context_dim: 1024
control_stage_config:
target: cldm.cldm.ControlNet
params:
use_checkpoint: True
image_size: 32 # unused
in_channels: 4
hint_channels: 3
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
unet_config:
target: cldm.cldm.ControlledUnetModel
params:
use_checkpoint: True
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"
style_embedding_config:
target: scripts.image_emb_hidden.ClipImageEncoder
dataset:
train:
target: visconet.deepfashion.DeepFashionDataset
params:
image_root: "/home/soon/datasets/deepfashion_inshop"
image_dir: img_512_padded
pose_dir: openpose_hand_512
style_dir: styles
style_postfix: _hidden
mask_dir: smpl_256
data_files:
- data/deepfashion/pairs-train-all.csv
- data/deepfashion/solo-train-all.csv
map_file: data/deepfashion/deepfashion_map.csv
style_emb_shape:
- 257
- 1024
style_names:
- background
- face
- hair
- headwear
- top
- outer
- bottom
- shoes
- accesories
val:
target: visconet.deepfashion.DeepFashionDataset
params:
image_root: "/home/soon/datasets/deepfashion_inshop"
image_dir: img_512_padded
pose_dir: openpose_hand_512
style_dir: styles
style_postfix: _hidden
mask_dir: smpl_256
data_files:
- data/deepfashion/solo-test-all.csv
map_file: data/deepfashion/deepfashion_map.csv
sample_ratio: 0.1
style_emb_shape:
- 257
- 1024
style_names:
- background
- face
- hair
- headwear
- top
- outer
- bottom
- shoes
- accesories
test:
target: visconet.deepfashion.DeepFashionDataset
params:
image_root: "/home/soon/datasets/deepfashion_inshop"
image_dir: img_512_padded
pose_dir: openpose_hand_512
style_dir: styles
style_postfix: _hidden
mask_dir: smpl_256
data_files:
- data/deepfashion/pairs-test-all.csv
map_file: data/deepfashion/deepfashion_map.csv
style_emb_shape:
- 257
- 1024
style_names:
- background
- face
- hair
- headwear
- top
- outer
- bottom
- shoes
- accesories |