import numpy as np import cv2 import os annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img def pad_image(img, min_aspect_ratio=0.625): H, W, C = img.shape if W/H < min_aspect_ratio: NEW_W = int(min_aspect_ratio * H) width_padding = (NEW_W-W)//2 black_bg = np.zeros((H, NEW_W, 3), dtype=img.dtype) black_bg[:, width_padding:width_padding+W,:] = img return black_bg else: return img