## *ViscoNet*: Bridging and Harmonizing Visual and Textual Conditioning for ControlNet
[Soon Yau Cheong](https://scholar.google.com/citations?user=dRot7GUAAAAJ&hl=en)
[Armin Mustafa](https://scholar.google.com/citations?user=0xOHqkMAAAAJ&hl=en)
[Andrew Gilbert](https://scholar.google.com/citations?user=NNhnVwoAAAAJ&hl=en)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/3_6Zq3hk86Q)
https://github.com/soon-yau/visconet/assets/19167278/ae58b7ab-fa76-4253-8a10-46656f234b20
### Requirements
A suitable [conda](https://conda.io/) environment named `control` can be created
and activated with:
```
conda env create -f environment.yaml
conda activate control
```
### Files
All model and data files are in [here](https://huggingface.co/soonyau/visconet/tree/main).
Including eval.zip containing all images used in human evaluation.
### Gradio App
[![App](./assets/app.png)](https://youtu.be/3_6Zq3hk86Q)
1. Download *visconet_v1.pth* and *exp-schp-201908301523-atr.pth* into directory ./models
2. (Optional) download fashion.zip and unzip it to home directory.
3. run ```python gradio_visconet.py```
### Citation
```
@article{cheong2023visconet,
author = {Cheong, Soon Yau and Mustafa, Armin and Gilbert, Andrew},
title = {ViscoNet: Bridging and Harmonizing Visual and Textual Conditioning for ControlNet},
journal = {Arxiv Preprint 2312.03154},
month = {December},
year = {2023}}
```