## *ViscoNet*: Bridging and Harmonizing Visual and Textual Conditioning for ControlNet [Soon Yau Cheong](https://scholar.google.com/citations?user=dRot7GUAAAAJ&hl=en) [Armin Mustafa](https://scholar.google.com/citations?user=0xOHqkMAAAAJ&hl=en) [Andrew Gilbert](https://scholar.google.com/citations?user=NNhnVwoAAAAJ&hl=en) [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/3_6Zq3hk86Q) https://github.com/soon-yau/visconet/assets/19167278/ae58b7ab-fa76-4253-8a10-46656f234b20 ### Requirements A suitable [conda](https://conda.io/) environment named `control` can be created and activated with: ``` conda env create -f environment.yaml conda activate control ``` ### Files All model and data files are in [here](https://huggingface.co/soonyau/visconet/tree/main). Including eval.zip containing all images used in human evaluation. ### Gradio App [![App](./assets/app.png)](https://youtu.be/3_6Zq3hk86Q) 1. Download *visconet_v1.pth* and *exp-schp-201908301523-atr.pth* into directory ./models 2. (Optional) download fashion.zip and unzip it to home directory. 3. run ```python gradio_visconet.py``` ### Citation ``` @article{cheong2023visconet, author = {Cheong, Soon Yau and Mustafa, Armin and Gilbert, Andrew}, title = {ViscoNet: Bridging and Harmonizing Visual and Textual Conditioning for ControlNet}, journal = {Arxiv Preprint 2312.03154}, month = {December}, year = {2023}} ```