Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,13 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
2 |
import torch
|
3 |
import pickle
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
6 |
|
7 |
from translate import Translator
|
@@ -10,6 +17,31 @@ def init_session_state():
|
|
10 |
if 'history' not in st.session_state:
|
11 |
st.session_state.history = ""
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Initialize session state
|
14 |
init_session_state()
|
15 |
|
@@ -79,14 +111,26 @@ if text:
|
|
79 |
|
80 |
|
81 |
|
82 |
-
st.session_state.history += "Based on this info only:" + answer +" ,answer this question, by reasoning step by step:" + text # Add new text to history
|
83 |
-
out = pipe(st.session_state.history, max_new_tokens=256) # Generate output based on history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
# st.text(st.session_state.history)
|
87 |
|
88 |
-
translated_text2 = translator2.translate(out[0]['generated_text'])
|
89 |
-
|
90 |
|
91 |
st.text(translated_text2)
|
92 |
|
|
|
2 |
import torch
|
3 |
import pickle
|
4 |
import streamlit as st
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
|
7 |
+
client = InferenceClient(
|
8 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
13 |
|
14 |
from translate import Translator
|
|
|
17 |
if 'history' not in st.session_state:
|
18 |
st.session_state.history = ""
|
19 |
|
20 |
+
|
21 |
+
temperature=0.9
|
22 |
+
max_new_tokens=256
|
23 |
+
top_p=0.95
|
24 |
+
repetition_penalty=1.0
|
25 |
+
|
26 |
+
|
27 |
+
generate_kwargs = dict(
|
28 |
+
temperature=temperature,
|
29 |
+
max_new_tokens=max_new_tokens,
|
30 |
+
top_p=top_p,
|
31 |
+
repetition_penalty=repetition_penalty,
|
32 |
+
do_sample=True,
|
33 |
+
seed=42,
|
34 |
+
)
|
35 |
+
|
36 |
+
def format_prompt(message, history):
|
37 |
+
prompt = "<s>"
|
38 |
+
for user_prompt, bot_response in history:
|
39 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
40 |
+
prompt += f" {bot_response}</s> "
|
41 |
+
prompt += f"[INST] {message} [/INST]"
|
42 |
+
return prompt
|
43 |
+
|
44 |
+
|
45 |
# Initialize session state
|
46 |
init_session_state()
|
47 |
|
|
|
111 |
|
112 |
|
113 |
|
114 |
+
# st.session_state.history += "Based on this info only:" + answer +" ,answer this question, by reasoning step by step:" + text # Add new text to history
|
115 |
+
# out = pipe(st.session_state.history, max_new_tokens=256) # Generate output based on history
|
116 |
+
|
117 |
+
history = st.session_state.history
|
118 |
+
prompt = "Based on this info only:" + answer +" ,answer this question, by reasoning step by step:" + text
|
119 |
+
formatted_prompt = format_prompt(prompt, history)
|
120 |
+
|
121 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
122 |
+
output = ""
|
123 |
+
|
124 |
+
for response in stream:
|
125 |
+
output += response.token.text
|
126 |
+
yield output
|
127 |
+
return output
|
128 |
|
129 |
|
130 |
# st.text(st.session_state.history)
|
131 |
|
132 |
+
# translated_text2 = translator2.translate(out[0]['generated_text'])
|
133 |
+
translated_text2 = translator2.translate(output)
|
134 |
|
135 |
st.text(translated_text2)
|
136 |
|