from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch import pickle import streamlit as st device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli" # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForSequenceClassification.from_pretrained(model_name) classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli") label_names = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"] def classify(text): output = classifier(text, label_names, multi_label=True) return output text = st.text_input('Enter some text:') # Input field for new text if text: st.text(classify(text))