soufyane commited on
Commit
08517cb
·
verified ·
1 Parent(s): 6985f0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -56
app.py CHANGED
@@ -1,63 +1,27 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import keras
3
+ import keras_nlp
4
 
5
+ import numpy as np
6
+ import pandas as pd
7
+ keras.utils.set_random_seed(42)
 
8
 
9
+ gemma_lm = keras_nlp.models.CausalLM.from_preset("hf://soufyane/gemma_2b_instruct_FT_DATA_SCIENCE_lora36_1")
10
 
 
 
 
 
 
 
 
 
 
11
 
12
+ def generate_answer(history, question):
13
+ # Replace this with the actual code to generate the answer using your model
14
+ answer = gemma_lm.generate(f"You are an AI Agent specialized to answer to questions about Data Science and be greatfull and nice and helpfull\n\nQuestion:\n{question}\n\nAnswer:\n", max_length=1024)
15
+ history.append((question, answer))
16
+ return history
17
 
18
+ # Gradio interface
19
+ with gr.Blocks() as demo:
20
+ gr.Markdown("# Chatbot")
21
+ chatbot = gr.Chatbot()
22
+ with gr.Row():
23
+ txt = gr.Textbox(show_label=False, placeholder="Enter your question here...")
24
+ txt.submit(generate_answer, [chatbot, txt], chatbot)
25
 
26
+ # Launch the interface
27
+ demo.launch()