Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import keras
|
3 |
+
import keras_nlp
|
4 |
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
keras.utils.set_random_seed(42)
|
|
|
8 |
|
9 |
+
gemma_lm = keras_nlp.models.CausalLM.from_preset("hf://soufyane/gemma_2b_instruct_FT_DATA_SCIENCE_lora36_1")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def generate_answer(history, question):
|
13 |
+
# Replace this with the actual code to generate the answer using your model
|
14 |
+
answer = gemma_lm.generate(f"You are an AI Agent specialized to answer to questions about Data Science and be greatfull and nice and helpfull\n\nQuestion:\n{question}\n\nAnswer:\n", max_length=1024)
|
15 |
+
history.append((question, answer))
|
16 |
+
return history
|
17 |
|
18 |
+
# Gradio interface
|
19 |
+
with gr.Blocks() as demo:
|
20 |
+
gr.Markdown("# Chatbot")
|
21 |
+
chatbot = gr.Chatbot()
|
22 |
+
with gr.Row():
|
23 |
+
txt = gr.Textbox(show_label=False, placeholder="Enter your question here...")
|
24 |
+
txt.submit(generate_answer, [chatbot, txt], chatbot)
|
25 |
|
26 |
+
# Launch the interface
|
27 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|