""" Base class for Tokenizers that can train a vocabulary from text, encode and decode strings into lists of integers and back. The Tokenizer can also save and load its model to/from disk. """ from tokenizer.utils import render_token class Tokenizer: """Base class for Tokenizers""" def __init__(self): # default: vocab size of 256 (all bytes), no merges, no patterns self.merges = {} # (int, int) -> int self.pattern = "" # str self.special_tokens = {} # str -> int, e.g. {'<|endoftext|>': 100257} self.vocab = self._build_vocab() # int -> bytes def train(self, text, vocab_size, verbose=False): # Tokenizer can train a vocabulary of size vocab_size from text raise NotImplementedError def encode(self, text): # Tokenizer can encode a string into a list of integers raise NotImplementedError def decode(self, ids): # Tokenizer can decode a list of integers into a string raise NotImplementedError def _build_vocab(self): # vocab is simply and deterministically derived from merges vocab = {idx: bytes([idx]) for idx in range(256)} for (p0, p1), idx in self.merges.items(): vocab[idx] = vocab[p0] + vocab[p1] for special, idx in self.special_tokens.items(): vocab[idx] = special.encode("utf-8") return vocab def save(self, file_prefix): """ Saves two files: file_prefix.vocab and file_prefix.model This is inspired (but not equivalent to!) sentencepiece's model saving: - model file is the critical one, intended for load() - vocab file is just a pretty printed version for human inspection only """ # write the model: to be used in load() later model_file = file_prefix + ".model" with open(model_file, "w") as f: # write the version, pattern and merges, that's all that's needed f.write("minbpe v1\n") f.write(f"{self.pattern}\n") # write the special tokens, first the number of them, then each one f.write(f"{len(self.special_tokens)}\n") for special, idx in self.special_tokens.items(): f.write(f"{special} {idx}\n") # the merges dict for idx1, idx2 in self.merges: f.write(f"{idx1} {idx2}\n") # write the vocab: for the human to look at vocab_file = file_prefix + ".vocab" inverted_merges = {idx: pair for pair, idx in self.merges.items()} with open(vocab_file, "w", encoding="utf-8") as f: for idx, token in self.vocab.items(): # note: many tokens may be partial utf-8 sequences # and cannot be decoded into valid strings. Here we're using # errors='replace' to replace them with the replacement char �. # this also means that we couldn't possibly use .vocab in load() # because decoding in this way is a lossy operation! s = render_token(token) # find the children of this token, if any if idx in inverted_merges: # if this token has children, render it nicely as a merge idx0, idx1 = inverted_merges[idx] s0 = render_token(self.vocab[idx0]) s1 = render_token(self.vocab[idx1]) f.write(f"[{s0}][{s1}] -> [{s}] {idx}\n") else: # otherwise this is leaf token, just print it # (this should just be the first 256 tokens, the bytes) f.write(f"[{s}] {idx}\n") def load(self, model_file): """Inverse of save() but only for the model file""" assert model_file.endswith(".model") # read the model file merges = {} special_tokens = {} idx = 256 with open(model_file, "r", encoding="utf-8") as f: # read the version version = f.readline().strip() assert version == "minbpe v1" # read the pattern self.pattern = f.readline().strip() # read the special tokens num_special = int(f.readline().strip()) for _ in range(num_special): special, special_idx = f.readline().strip().split() special_tokens[special] = int(special_idx) # read the merges for line in f: idx1, idx2 = map(int, line.split()) merges[(idx1, idx2)] = idx idx += 1 self.merges = merges self.special_tokens = special_tokens self.vocab = self._build_vocab()