from transformers import pipeline import gradio as gr # Load the summarization model once model = pipeline("summarization") # Prediction function def predict(prompt): try: # Generate summary and return summary = model(prompt, max_length=150, min_length=30, do_sample=False)[0][ "summary_text" ] return summary except Exception as e: return f"Error: {str(e)}" # Gradio interface with gr.Interface( fn=predict, inputs=gr.Textbox( label="Enter text to summarize", placeholder="Type your content here..." ), outputs=gr.Textbox(label="Summary"), title="Text Summarizer", description="Enter text and get a concise summary powered by Hugging Face transformers.", ) as interface: interface.launch()