Spaces:
Runtime error
Runtime error
File size: 9,041 Bytes
8d4131e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import shutil
from pathlib import Path
import torch
import lightning as L
from lightning.pytorch.loggers import Logger
from typing import List
from src.datamodules.dogbreed_datamodule import main_dataloader
from src.utils.logging_utils import setup_logger, task_wrapper
from loguru import logger
from dotenv import load_dotenv, find_dotenv
import rootutils
import hydra
from omegaconf import DictConfig, OmegaConf
# Load environment variables
load_dotenv(find_dotenv(".env"))
# Setup root directory
root = rootutils.setup_root(__file__, indicator=".project-root")
def instantiate_callbacks(callback_cfg: DictConfig) -> List[L.Callback]:
"""Instantiate and return a list of callbacks from the configuration."""
callbacks: List[L.Callback] = []
if not callback_cfg:
logger.warning("No callback configs found! Skipping..")
return callbacks
if not isinstance(callback_cfg, DictConfig):
raise TypeError("Callbacks config must be a DictConfig!")
for _, cb_conf in callback_cfg.items():
if "_target_" in cb_conf:
logger.info(f"Instantiating callback <{cb_conf._target_}>")
callbacks.append(hydra.utils.instantiate(cb_conf))
return callbacks
def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
"""Instantiate and return a list of loggers from the configuration."""
loggers_ls: List[Logger] = []
if not logger_cfg:
logger.warning("No logger configs found! Skipping..")
return loggers_ls
if not isinstance(logger_cfg, DictConfig):
raise TypeError("Logger config must be a DictConfig!")
for _, lg_conf in logger_cfg.items():
if "_target_" in lg_conf:
logger.info(f"Instantiating logger <{lg_conf._target_}>")
loggers_ls.append(hydra.utils.instantiate(lg_conf))
return loggers_ls
def load_checkpoint_if_available(ckpt_path: str) -> str:
"""Check if the specified checkpoint exists and return the valid checkpoint path."""
if ckpt_path and Path(ckpt_path).exists():
logger.info(f"Checkpoint found: {ckpt_path}")
return ckpt_path
else:
logger.warning(
f"No checkpoint found at {ckpt_path}. Using current model weights."
)
return None
def clear_checkpoint_directory(ckpt_dir: str):
"""Clear all contents of the checkpoint directory without deleting the directory itself."""
ckpt_dir_path = Path(ckpt_dir)
if ckpt_dir_path.exists() and ckpt_dir_path.is_dir():
logger.info(f"Clearing checkpoint directory: {ckpt_dir}")
# Iterate over all files and directories in the checkpoint directory and remove them
for item in ckpt_dir_path.iterdir():
try:
if item.is_file() or item.is_symlink():
item.unlink() # Remove file or symlink
elif item.is_dir():
shutil.rmtree(item) # Remove directory
except Exception as e:
logger.error(f"Failed to delete {item}: {e}")
logger.info(f"Checkpoint directory cleared: {ckpt_dir}")
else:
logger.info(
f"Checkpoint directory does not exist. Creating directory: {ckpt_dir}"
)
os.makedirs(ckpt_dir_path, exist_ok=True)
@task_wrapper
def train_module(
cfg: DictConfig,
data_module: L.LightningDataModule,
model: L.LightningModule,
trainer: L.Trainer,
):
"""Train the model using the provided Trainer and DataModule."""
logger.info("Training the model")
trainer.fit(model, data_module)
train_metrics = trainer.callback_metrics
try:
logger.info(
f"Training completed with the following metrics- train_acc: {train_metrics['train_acc'].item()} and val_acc: {train_metrics['val_acc'].item()}"
)
except KeyError:
logger.info(f"Training completed with the following metrics:{train_metrics}")
return train_metrics
@task_wrapper
def run_test_module(
cfg: DictConfig,
datamodule: L.LightningDataModule,
model: L.LightningModule,
trainer: L.Trainer,
):
"""Test the model using the best checkpoint or the current model weights."""
logger.info("Testing the model")
datamodule.setup(stage="test")
ckpt_path = load_checkpoint_if_available(cfg.ckpt_path)
# If no checkpoint is available, Lightning will use current model weights
test_metrics = trainer.test(model, datamodule, ckpt_path=ckpt_path)
logger.info(f"Test metrics:\n{test_metrics}")
return test_metrics[0] if test_metrics else {}
@hydra.main(config_path="../configs", config_name="train", version_base="1.1")
def setup_run_trainer(cfg: DictConfig):
"""Set up and run the Trainer for training and testing the model."""
# show me the entire config
logger.info(f"Config:\n{OmegaConf.to_yaml(cfg)}")
# Initialize logger
if cfg.task_name == "train":
log_path = Path(cfg.paths.log_dir) / "train.log"
else:
log_path = Path(cfg.paths.log_dir) / "eval.log"
setup_logger(log_path)
# the path to the checkpoint directory
root_dir = cfg.paths.root_dir
logger.info(f"Root directory: {root_dir}")
logger.info(f"Current working directory: {os.listdir(root_dir)}")
ckpt_dir = cfg.paths.ckpt_dir
logger.info(f"Checkpoint directory: {ckpt_dir}")
# the path to the data directory
data_dir = cfg.paths.data_dir
logger.info(f"Data directory: {data_dir}")
# the path to the log directory
log_dir = cfg.paths.log_dir
logger.info(f"Log directory: {log_dir}")
# the path to the artifact directory
artifact_dir = cfg.paths.artifact_dir
logger.info(f"Artifact directory: {artifact_dir}")
# output directory
output_dir = cfg.paths.output_dir
logger.info(f"Output directory: {output_dir}")
# name of the experiment
experiment_name = cfg.name
logger.info(f"Experiment name: {experiment_name}")
# Initialize DataModule
if experiment_name == "dogbreed_experiment":
logger.info("Setting up the DataModule")
dataset_df, datamodule = main_dataloader(cfg)
labels = dataset_df.label.nunique()
logger.info(f"Number of classes: {labels}")
os.makedirs(cfg.paths.artifact_dir, exist_ok=True)
dataset_df.to_csv(
Path(cfg.paths.artifact_dir) / "dogbreed_dataset.csv", index=False
)
elif (
experiment_name == "catdog_experiment"
or experiment_name == "catdog_experiment_convnext"
):
# Initialize DataModule
logger.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
# Check for GPU availability
logger.info("GPU available" if torch.cuda.is_available() else "No GPU available")
# Set seed for reproducibility
L.seed_everything(cfg.seed, workers=True)
# Initialize model
logger.info(f"Instantiating model <{cfg.model._target_}>")
model: L.LightningModule = hydra.utils.instantiate(cfg.model)
logger.info(f"Model summary:\n{model}")
# Set up callbacks and loggers
logger.info("Setting up callbacks and loggers")
callbacks: List[L.Callback] = instantiate_callbacks(cfg.get("callbacks"))
logger.info(f"Callbacks: {callbacks}")
loggers: List[Logger] = instantiate_loggers(cfg.get("logger"))
logger.info(f"Loggers: {loggers}")
# Initialize Trainer
logger.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: L.Trainer = hydra.utils.instantiate(
cfg.trainer, callbacks=callbacks, logger=loggers
)
# Train and test the model based on config settings
train_metrics = {}
if cfg.get("train"):
# clear the checkpoint directory
clear_checkpoint_directory(cfg.paths.ckpt_dir)
logger.info("Training the model")
train_metrics = train_module(cfg, datamodule, model, trainer)
# Write training done flag using Hydra paths config
done_flag_path = Path(cfg.paths.ckpt_dir) / "train_done.flag"
with done_flag_path.open("w") as f:
f.write("Training completed.\n")
logger.info(f"Training completion flag written to: {done_flag_path}")
logger.info(
f"Training completed. Checkpoint directory: {os.listdir(cfg.paths.ckpt_dir)}"
)
test_metrics = {}
if cfg.get("test"):
logger.info(f"Checkpoint directory: {os.listdir(cfg.paths.ckpt_dir)}")
test_metrics = run_test_module(cfg, datamodule, model, trainer)
# Combine metrics
all_metrics = {**train_metrics, **test_metrics}
# Extract and return the optimization metric
optimization_metric = all_metrics.get(cfg.get("optimization_metric"))
if optimization_metric is None:
logger.warning(
f"Optimization metric '{cfg.get('optimization_metric')}' not found in metrics. Returning 0."
)
return 0.0
return optimization_metric
if __name__ == "__main__":
setup_run_trainer()
|