Soutrik
train and eval working
0f27535
raw
history blame
1.3 kB
# @package _global_
# specify here default configuration
# order of defaults determines the order in which configs override each other
defaults:
- _self_
- data: catdog
- model: catdog_classifier
- callbacks: default
- logger: default # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
- trainer: default
- paths: catdog
- hydra: default
- experiment: catdog_experiment
# debugging config (enable through command line, e.g. `python train.py debug=default)
- debug: null
# task name, determines output directory path
task_name: "train"
# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
tags: ["dev"]
# set False to skip model training
train: True
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: False
# simply provide checkpoint path to resume training
ckpt_path: ${paths.ckpt_dir}/best-checkpoint.ckpt
# seed for random number generators in pytorch, numpy and python.random
seed: 42
# name of the experiment
name: "dogbreed_experiment"
# optimization metric
optimization_metric: "val_acc"