# @package _global_ # specify here default configuration # order of defaults determines the order in which configs override each other defaults: - _self_ - data: catdog - model: catdog_classifier - callbacks: default - logger: default # set logger here or use command line (e.g. `python train.py logger=tensorboard`) - trainer: default - paths: catdog - hydra: default - experiment: catdog_experiment # debugging config (enable through command line, e.g. `python train.py debug=default) - debug: null # task name, determines output directory path task_name: "train" # tags to help you identify your experiments # you can overwrite this in experiment configs # overwrite from command line with `python train.py tags="[first_tag, second_tag]"` tags: ["dev"] # set False to skip model training train: True # evaluate on test set, using best model weights achieved during training # lightning chooses best weights based on the metric specified in checkpoint callback test: False # simply provide checkpoint path to resume training ckpt_path: ${paths.ckpt_dir}/best-checkpoint.ckpt # seed for random number generators in pytorch, numpy and python.random seed: 42 # name of the experiment name: "catdog_experiment" # optimization metric optimization_metric: "val_acc" # optuna hyperparameter optimization n_trials: 2