Spaces:
Sleeping
Sleeping
Tried using new translate function
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
import gradio as gr
|
3 |
|
4 |
|
@@ -8,12 +8,65 @@ import gradio as gr
|
|
8 |
# tokenizer_en_to_kin = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="eng_Latn", tgt_lang="kin_Latn")
|
9 |
#tokenizer_ses_to_en = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="ses_Latn", tgt_lang="eng_Latn")
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("souvorinkg/eng-ses-nllb", token=False).half()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load the tokenizer and model for Kinyarwanda to English
|
13 |
# tokenizer_kin_to_en = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="kin_Latn", tgt_lang="eng_Latn")
|
14 |
|
15 |
-
tokenizer_en_to_ses = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="eng_Latn", tgt_lang="ses_Latn")
|
16 |
-
tokenizer_tsn_to_eng = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="tsn_Latn", tgt_lang="eng_Latn")
|
17 |
|
18 |
|
19 |
|
@@ -29,15 +82,15 @@ tokenizer_tsn_to_eng = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb",
|
|
29 |
# translated_tokens = model.generate(**inputs, max_length=30, no_repeat_ngram_size=2)
|
30 |
# return tokenizer_kin_to_en.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
31 |
|
32 |
-
def translate_en_to_ses(SourceText):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
def translate_ses_to_en(SourceText):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
# def translate_en_to_tsn(SourceText):
|
43 |
# inputs = tokenizer_en_to_tsn(SourceText, return_tensors="pt")
|
@@ -45,21 +98,23 @@ def translate_ses_to_en(SourceText):
|
|
45 |
# return tokenizer_en_to_tsn.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
46 |
|
47 |
# Function to handle dropdown selection and call the appropriate translation function
|
48 |
-
def
|
49 |
# if direction == "English to Kinyarwanda":
|
50 |
# return translate_en_to_kin(SourceText)
|
51 |
# if direction == "Kinyarwanda to English":
|
52 |
# return translate_kin_to_en(SourceText)
|
53 |
if direction == "English to Sesotho":
|
54 |
-
|
|
|
55 |
if direction == "Sesotho to English":
|
56 |
-
|
|
|
57 |
# if direction == "English to Tswana":
|
58 |
# return translate == translate_en_to_tsn(SourceText)
|
59 |
|
60 |
# Create the Gradio interface
|
61 |
iface = gr.Interface(
|
62 |
-
fn=
|
63 |
inputs=[gr.Textbox(lines=2, label="Input Text"), gr.Dropdown(["English to Sesotho", "Sesotho to English"], label="Translation Direction")],
|
64 |
outputs="text",
|
65 |
title="Bilingual Translator",
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, NllbTokenizer
|
2 |
import gradio as gr
|
3 |
|
4 |
|
|
|
8 |
# tokenizer_en_to_kin = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="eng_Latn", tgt_lang="kin_Latn")
|
9 |
#tokenizer_ses_to_en = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="ses_Latn", tgt_lang="eng_Latn")
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained("souvorinkg/eng-ses-nllb", token=False).half()
|
11 |
+
tokenizer = NllbTokenizer.from_pretrained("souvorinkg/eng-ses-nllb")
|
12 |
+
|
13 |
+
def fix_tokenizer(tokenizer, new_lang='ses_Latn'):
|
14 |
+
"""
|
15 |
+
Add a new language token to the tokenizer vocabulary
|
16 |
+
(this should be done each time after its initialization)
|
17 |
+
"""
|
18 |
+
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
|
19 |
+
tokenizer.lang_code_to_id[new_lang] = old_len-1
|
20 |
+
tokenizer.id_to_lang_code[old_len-1] = new_lang
|
21 |
+
# always move "mask" to the last position
|
22 |
+
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
|
23 |
+
|
24 |
+
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
|
25 |
+
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
|
26 |
+
if new_lang not in tokenizer._additional_special_tokens:
|
27 |
+
tokenizer._additional_special_tokens.append(new_lang)
|
28 |
+
# clear the added token encoder; otherwise a new token may end up there by mistake
|
29 |
+
tokenizer.added_tokens_encoder = {}
|
30 |
+
tokenizer.added_tokens_decoder = {}
|
31 |
+
|
32 |
+
fix_tokenizer(tokenizer)
|
33 |
+
model.resize_token_embeddings(len(tokenizer))
|
34 |
+
|
35 |
+
def translate(
|
36 |
+
text, src_lang, tgt_lang,
|
37 |
+
a=32, b=3, max_input_length=1024, num_beams=4, **kwargs
|
38 |
+
):
|
39 |
+
"""Turn a text or a list of texts into a list of translations"""
|
40 |
+
tokenizer.src_lang = src_lang
|
41 |
+
tokenizer.tgt_lang = tgt_lang
|
42 |
+
inputs = tokenizer(
|
43 |
+
text, return_tensors='pt', padding=True, truncation=True,
|
44 |
+
max_length=max_input_length
|
45 |
+
)
|
46 |
+
model.eval() # turn off training mode
|
47 |
+
result = model.generate(
|
48 |
+
**inputs.to(model.device),
|
49 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
|
50 |
+
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
|
51 |
+
num_beams=num_beams, **kwargs
|
52 |
+
)
|
53 |
+
return tokenizer.batch_decode(result, skip_special_tokens=True)
|
54 |
+
|
55 |
+
# fixing the new/moved token embeddings in the model
|
56 |
+
added_token_id = tokenizer.convert_tokens_to_ids('ses_Latn')
|
57 |
+
similar_lang_id = tokenizer.convert_tokens_to_ids('tsn_Latn')
|
58 |
+
embeds = model.model.shared.weight.data
|
59 |
+
# moving the embedding for "mask" to its new position
|
60 |
+
embeds[added_token_id+1] =embeds[added_token_id]
|
61 |
+
# initializing new language token with a token of a similar language
|
62 |
+
embeds[added_token_id] = embeds[similar_lang_id]
|
63 |
+
|
64 |
|
65 |
# Load the tokenizer and model for Kinyarwanda to English
|
66 |
# tokenizer_kin_to_en = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="kin_Latn", tgt_lang="eng_Latn")
|
67 |
|
68 |
+
#tokenizer_en_to_ses = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="eng_Latn", tgt_lang="ses_Latn")
|
69 |
+
#tokenizer_tsn_to_eng = AutoTokenizer.from_pretrained("souvorinkg/eng-ses-nllb", token=False, src_lang="tsn_Latn", tgt_lang="eng_Latn")
|
70 |
|
71 |
|
72 |
|
|
|
82 |
# translated_tokens = model.generate(**inputs, max_length=30, no_repeat_ngram_size=2)
|
83 |
# return tokenizer_kin_to_en.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
84 |
|
85 |
+
# def translate_en_to_ses(SourceText):
|
86 |
+
# inputs = tokenizer_en_to_ses(SourceText, return_tensors="pt")
|
87 |
+
# translated_tokens = model.generate(**inputs, max_length=30)
|
88 |
+
# return tokenizer_tsn_to_eng.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
89 |
|
90 |
+
# def translate_ses_to_en(SourceText):
|
91 |
+
# inputs = inputs = tokenizer_tsn_to_eng(SourceText, return_tensors="pt")
|
92 |
+
# translated_tokens = model.generate(**inputs, max_length=30)
|
93 |
+
# return tokenizer_en_to_ses.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
94 |
|
95 |
# def translate_en_to_tsn(SourceText):
|
96 |
# inputs = tokenizer_en_to_tsn(SourceText, return_tensors="pt")
|
|
|
98 |
# return tokenizer_en_to_tsn.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
99 |
|
100 |
# Function to handle dropdown selection and call the appropriate translation function
|
101 |
+
def translateIn(SourceText, direction):
|
102 |
# if direction == "English to Kinyarwanda":
|
103 |
# return translate_en_to_kin(SourceText)
|
104 |
# if direction == "Kinyarwanda to English":
|
105 |
# return translate_kin_to_en(SourceText)
|
106 |
if direction == "English to Sesotho":
|
107 |
+
text = translate(text=SourceText, src_lang='eng_Latn', tgt_lang='ses_Latn')
|
108 |
+
return text
|
109 |
if direction == "Sesotho to English":
|
110 |
+
text = translate(text=SourceText, src_lang='tsn_Latn', tgt_lang='eng_Latn')
|
111 |
+
return text
|
112 |
# if direction == "English to Tswana":
|
113 |
# return translate == translate_en_to_tsn(SourceText)
|
114 |
|
115 |
# Create the Gradio interface
|
116 |
iface = gr.Interface(
|
117 |
+
fn=translateIn,
|
118 |
inputs=[gr.Textbox(lines=2, label="Input Text"), gr.Dropdown(["English to Sesotho", "Sesotho to English"], label="Translation Direction")],
|
119 |
outputs="text",
|
120 |
title="Bilingual Translator",
|