File size: 9,299 Bytes
c987532
 
 
 
 
 
d852f6a
 
 
 
 
c987532
 
 
 
dc120b2
 
 
 
 
 
c987532
 
dc120b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c987532
 
 
 
 
 
dc120b2
 
 
 
c987532
 
 
 
 
 
 
 
 
dc120b2
 
 
 
c987532
dc120b2
c987532
 
 
 
 
dc120b2
 
 
 
 
 
 
 
 
 
c987532
 
 
dc120b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c987532
 
 
 
 
dc120b2
 
 
c987532
d852f6a
 
 
 
c987532
ec68a7d
dc120b2
c987532
dc120b2
d852f6a
ec68a7d
d852f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c987532
dc120b2
 
c987532
dc120b2
 
 
 
 
 
d852f6a
dc120b2
ec68a7d
 
c987532
dc120b2
 
e0a1444
 
 
 
dc120b2
d852f6a
c987532
 
d852f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
# import queue
# import time

# from PIL import Image


model = YOLO('checkpoints/FastSAM.pt')  # load a custom model


def fast_process(annotations, image, high_quality, device):
    if isinstance(annotations[0],dict):
        annotations = [annotation['segmentation'] for annotation in annotations]

    original_h = image.height
    original_w = image.width
    fig = plt.figure(figsize=(10, 10))
    plt.imshow(image)
    if high_quality == True:
        if isinstance(annotations[0],torch.Tensor):
            annotations = np.array(annotations.cpu())
        for i, mask in enumerate(annotations):
            mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
            annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
    if device == 'cpu':
        annotations = np.array(annotations)
        fast_show_mask(annotations,
                       plt.gca(),
                       bbox=None,
                       points=None,
                       pointlabel=None,
                       retinamask=True,
                       target_height=original_h,
                       target_width=original_w)
    else:
        if isinstance(annotations[0],np.ndarray):
            annotations = torch.from_numpy(annotations)
        fast_show_mask_gpu(annotations,
                           plt.gca(),
                           bbox=None,
                           points=None,
                           pointlabel=None)
    if isinstance(annotations, torch.Tensor):
        annotations = annotations.cpu().numpy()
    if high_quality == True:
        contour_all = []
        temp = np.zeros((original_h, original_w,1))
        for i, mask in enumerate(annotations):
            if type(mask) == dict:
                mask = mask['segmentation']
            annotation = mask.astype(np.uint8)
            contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            for contour in contours:
                contour_all.append(contour)
        cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
        color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
        contour_mask = temp / 225 * color.reshape(1, 1, -1)
        plt.imshow(contour_mask)

    plt.axis('off')
    plt.tight_layout()
    return fig


#   CPU post process
def fast_show_mask(annotation, ax, bbox=None, 

                   points=None, pointlabel=None,

                   retinamask=True, target_height=960,

                   target_width=960):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    # 将annotation 按照面积 排序
    areas = np.sum(annotation, axis=(1, 2))
    sorted_indices = np.argsort(areas)[::1]
    annotation = annotation[sorted_indices]

    index = (annotation != 0).argmax(axis=0)
    color = np.random.random((msak_sum,1,1,3))
    transparency = np.ones((msak_sum,1,1,1)) * 0.6
    visual = np.concatenate([color,transparency],axis=-1)
    mask_image = np.expand_dims(annotation,-1) * visual

    show = np.zeros((height,weight,4))

    h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    show[h_indices, w_indices, :] = mask_image[indices]
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    
    if retinamask==False:
        show = cv2.resize(show,(target_width,target_height),interpolation=cv2.INTER_NEAREST)
    ax.imshow(show)


def fast_show_mask_gpu(annotation, ax,

                       bbox=None, points=None, 

                       pointlabel=None):
    msak_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    areas = torch.sum(annotation, dim=(1, 2))
    sorted_indices = torch.argsort(areas, descending=False)
    annotation = annotation[sorted_indices]
    # 找每个位置第一个非零值下标
    index = (annotation != 0).to(torch.long).argmax(dim=0)
    color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
    transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
    visual = torch.cat([color,transparency],dim=-1)
    mask_image = torch.unsqueeze(annotation,-1) * visual
    # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
    show = torch.zeros((height,weight,4)).to(annotation.device)
    h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # 使用向量化索引更新show的值
    show[h_indices, w_indices, :] = mask_image[indices]
    show_cpu = show.cpu().numpy()
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
    # draw point
    if points is not None:
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
        plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
    ax.imshow(show_cpu)


# # 建立请求队列和线程同步锁
# request_queue = queue.Queue(maxsize=10)
# lock = queue.Queue()

def predict(input, input_size=512, high_visual_quality=True):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    input_size = int(input_size)  # 确保 imgsz 是整数
    results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
    fig = fast_process(annotations=results[0].masks.data,
                             image=input, high_quality=high_visual_quality, device=device)
    return fig

# # 将耗时的函数包装在另一个函数中,用于控制队列和线程同步
# def process_request():
#     while True:
#         if not request_queue.empty():
#             # 如果请求队列不为空,则处理该请求
#             try:
#                 lock.put(1)   # 加锁,防止同时处理多个请求
#                 input_package = request_queue.get()
#                 fig = predict(input_package)
#                 request_queue.task_done()   # 请求处理结束,移除请求
#                 lock.get()   # 解锁
#                 yield fig   # 返回预测结果
#             except:
#                 lock.get()   # 出错时也需要解锁
#         else:
#             # 如果请求队列为空,则等待新的请求到达
#             time.sleep(1)


# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size)  # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
#                             image=input, high_quality=high_quality_visual, device=device)
app_interface = gr.Interface(fn=predict,
                    inputs=[gr.components.Image(type='pil'),
                            gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64),
                            gr.components.Checkbox(value=True)],
                    outputs=['plot'],
                    # examples=[["assets/sa_8776.jpg", 1024, True]],
                    #    ["assets/sa_1309.jpg", 1024]],
                    examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
                              ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
                              ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
                              ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
                    cache_examples=False,
                    title="Fast Segment Anthing (Everything mode)"
                    )

# # 定义一个请求处理函数,将请求添加到队列中
# def handle_request(value):
#     try:
#         request_queue.put_nowait(value)   # 添加请求到队列
#     except:
#         return "当前队列已满,请稍后再试!"
#     return None

# # 添加请求处理函数到应用程序界面
# app_interface.add_transition("submit", handle_request)


app_interface.queue(concurrency_count=2)
app_interface.launch()