|
import numpy as np
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
import cv2
|
|
import torch
|
|
import os
|
|
import sys
|
|
import clip
|
|
|
|
|
|
def convert_box_xywh_to_xyxy(box):
|
|
x1 = box[0]
|
|
y1 = box[1]
|
|
x2 = box[0] + box[2]
|
|
y2 = box[1] + box[3]
|
|
return [x1, y1, x2, y2]
|
|
|
|
|
|
def segment_image(image, bbox):
|
|
image_array = np.array(image)
|
|
segmented_image_array = np.zeros_like(image_array)
|
|
x1, y1, x2, y2 = bbox
|
|
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
|
|
segmented_image = Image.fromarray(segmented_image_array)
|
|
black_image = Image.new("RGB", image.size, (255, 255, 255))
|
|
|
|
transparency_mask = np.zeros(
|
|
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
|
|
)
|
|
transparency_mask[y1:y2, x1:x2] = 255
|
|
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
|
|
black_image.paste(segmented_image, mask=transparency_mask_image)
|
|
return black_image
|
|
|
|
|
|
def format_results(result, filter=0):
|
|
annotations = []
|
|
n = len(result.masks.data)
|
|
for i in range(n):
|
|
annotation = {}
|
|
mask = result.masks.data[i] == 1.0
|
|
|
|
if torch.sum(mask) < filter:
|
|
continue
|
|
annotation["id"] = i
|
|
annotation["segmentation"] = mask.cpu().numpy()
|
|
annotation["bbox"] = result.boxes.data[i]
|
|
annotation["score"] = result.boxes.conf[i]
|
|
annotation["area"] = annotation["segmentation"].sum()
|
|
annotations.append(annotation)
|
|
return annotations
|
|
|
|
|
|
def filter_masks(annotations):
|
|
annotations.sort(key=lambda x: x["area"], reverse=True)
|
|
to_remove = set()
|
|
for i in range(0, len(annotations)):
|
|
a = annotations[i]
|
|
for j in range(i + 1, len(annotations)):
|
|
b = annotations[j]
|
|
if i != j and j not in to_remove:
|
|
|
|
if b["area"] < a["area"]:
|
|
if (a["segmentation"] & b["segmentation"]).sum() / b[
|
|
"segmentation"
|
|
].sum() > 0.8:
|
|
to_remove.add(j)
|
|
|
|
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
|
|
|
|
|
|
def get_bbox_from_mask(mask):
|
|
mask = mask.astype(np.uint8)
|
|
contours, hierarchy = cv2.findContours(
|
|
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
x1, y1, w, h = cv2.boundingRect(contours[0])
|
|
x2, y2 = x1 + w, y1 + h
|
|
if len(contours) > 1:
|
|
for b in contours:
|
|
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
|
|
|
|
x1 = min(x1, x_t)
|
|
y1 = min(y1, y_t)
|
|
x2 = max(x2, x_t + w_t)
|
|
y2 = max(y2, y_t + h_t)
|
|
h = y2 - y1
|
|
w = x2 - x1
|
|
return [x1, y1, x2, y2]
|
|
|
|
|
|
def fast_process(
|
|
annotations, args, mask_random_color, bbox=None, points=None, edges=False
|
|
):
|
|
if isinstance(annotations[0], dict):
|
|
annotations = [annotation["segmentation"] for annotation in annotations]
|
|
result_name = os.path.basename(args.img_path)
|
|
image = cv2.imread(args.img_path)
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
original_h = image.shape[0]
|
|
original_w = image.shape[1]
|
|
if sys.platform == "darwin":
|
|
plt.switch_backend("TkAgg")
|
|
plt.figure(figsize=(original_w/100, original_h/100))
|
|
|
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
|
plt.margins(0, 0)
|
|
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
|
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
|
plt.imshow(image)
|
|
if args.better_quality == True:
|
|
if isinstance(annotations[0], torch.Tensor):
|
|
annotations = np.array(annotations.cpu())
|
|
for i, mask in enumerate(annotations):
|
|
mask = cv2.morphologyEx(
|
|
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
|
)
|
|
annotations[i] = cv2.morphologyEx(
|
|
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
|
)
|
|
if args.device == "cpu":
|
|
annotations = np.array(annotations)
|
|
fast_show_mask(
|
|
annotations,
|
|
plt.gca(),
|
|
random_color=mask_random_color,
|
|
bbox=bbox,
|
|
points=points,
|
|
point_label=args.point_label,
|
|
retinamask=args.retina,
|
|
target_height=original_h,
|
|
target_width=original_w,
|
|
)
|
|
else:
|
|
if isinstance(annotations[0], np.ndarray):
|
|
annotations = torch.from_numpy(annotations)
|
|
fast_show_mask_gpu(
|
|
annotations,
|
|
plt.gca(),
|
|
random_color=args.randomcolor,
|
|
bbox=bbox,
|
|
points=points,
|
|
point_label=args.point_label,
|
|
retinamask=args.retina,
|
|
target_height=original_h,
|
|
target_width=original_w,
|
|
)
|
|
if isinstance(annotations, torch.Tensor):
|
|
annotations = annotations.cpu().numpy()
|
|
if args.withContours == True:
|
|
contour_all = []
|
|
temp = np.zeros((original_h, original_w, 1))
|
|
for i, mask in enumerate(annotations):
|
|
if type(mask) == dict:
|
|
mask = mask["segmentation"]
|
|
annotation = mask.astype(np.uint8)
|
|
if args.retina == False:
|
|
annotation = cv2.resize(
|
|
annotation,
|
|
(original_w, original_h),
|
|
interpolation=cv2.INTER_NEAREST,
|
|
)
|
|
contours, hierarchy = cv2.findContours(
|
|
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
for contour in contours:
|
|
contour_all.append(contour)
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
|
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
plt.imshow(contour_mask)
|
|
|
|
save_path = args.output
|
|
if not os.path.exists(save_path):
|
|
os.makedirs(save_path)
|
|
plt.axis("off")
|
|
fig = plt.gcf()
|
|
plt.draw()
|
|
|
|
try:
|
|
buf = fig.canvas.tostring_rgb()
|
|
except AttributeError:
|
|
fig.canvas.draw()
|
|
buf = fig.canvas.tostring_rgb()
|
|
|
|
cols, rows = fig.canvas.get_width_height()
|
|
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
|
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
|
|
def fast_show_mask(
|
|
annotation,
|
|
ax,
|
|
random_color=False,
|
|
bbox=None,
|
|
points=None,
|
|
point_label=None,
|
|
retinamask=True,
|
|
target_height=960,
|
|
target_width=960,
|
|
):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
|
|
areas = np.sum(annotation, axis=(1, 2))
|
|
sorted_indices = np.argsort(areas)
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).argmax(axis=0)
|
|
if random_color == True:
|
|
color = np.random.random((msak_sum, 1, 1, 3))
|
|
else:
|
|
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
|
|
[30 / 255, 144 / 255, 255 / 255]
|
|
)
|
|
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
|
|
visual = np.concatenate([color, transparency], axis=-1)
|
|
mask_image = np.expand_dims(annotation, -1) * visual
|
|
|
|
show = np.zeros((height, weight, 4))
|
|
h_indices, w_indices = np.meshgrid(
|
|
np.arange(height), np.arange(weight), indexing="ij"
|
|
)
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
show[h_indices, w_indices, :] = mask_image[indices]
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(
|
|
plt.Rectangle(
|
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
|
)
|
|
)
|
|
|
|
if points is not None:
|
|
plt.scatter(
|
|
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
|
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
|
s=20,
|
|
c="y",
|
|
)
|
|
plt.scatter(
|
|
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
|
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
|
s=20,
|
|
c="m",
|
|
)
|
|
|
|
if retinamask == False:
|
|
show = cv2.resize(
|
|
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
|
)
|
|
ax.imshow(show)
|
|
|
|
|
|
def fast_show_mask_gpu(
|
|
annotation,
|
|
ax,
|
|
random_color=False,
|
|
bbox=None,
|
|
points=None,
|
|
point_label=None,
|
|
retinamask=True,
|
|
target_height=960,
|
|
target_width=960,
|
|
):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
areas = torch.sum(annotation, dim=(1, 2))
|
|
sorted_indices = torch.argsort(areas, descending=False)
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
|
if random_color == True:
|
|
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
|
|
else:
|
|
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
|
|
[30 / 255, 144 / 255, 255 / 255]
|
|
).to(annotation.device)
|
|
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
|
|
visual = torch.cat([color, transparency], dim=-1)
|
|
mask_image = torch.unsqueeze(annotation, -1) * visual
|
|
|
|
show = torch.zeros((height, weight, 4)).to(annotation.device)
|
|
h_indices, w_indices = torch.meshgrid(
|
|
torch.arange(height), torch.arange(weight), indexing="ij"
|
|
)
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
show[h_indices, w_indices, :] = mask_image[indices]
|
|
show_cpu = show.cpu().numpy()
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(
|
|
plt.Rectangle(
|
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
|
)
|
|
)
|
|
|
|
if points is not None:
|
|
plt.scatter(
|
|
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
|
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
|
s=20,
|
|
c="y",
|
|
)
|
|
plt.scatter(
|
|
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
|
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
|
s=20,
|
|
c="m",
|
|
)
|
|
if retinamask == False:
|
|
show_cpu = cv2.resize(
|
|
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
|
)
|
|
ax.imshow(show_cpu)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
def retriev(
|
|
model, preprocess, elements, search_text: str, device
|
|
) -> int:
|
|
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
|
tokenized_text = clip.tokenize([search_text]).to(device)
|
|
stacked_images = torch.stack(preprocessed_images)
|
|
image_features = model.encode_image(stacked_images)
|
|
text_features = model.encode_text(tokenized_text)
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
probs = 100.0 * image_features @ text_features.T
|
|
return probs[:, 0].softmax(dim=0)
|
|
|
|
|
|
def crop_image(annotations, image_like):
|
|
if isinstance(image_like, str):
|
|
image = Image.open(image_like)
|
|
else:
|
|
image = image_like
|
|
ori_w, ori_h = image.size
|
|
mask_h, mask_w = annotations[0]["segmentation"].shape
|
|
if ori_w != mask_w or ori_h != mask_h:
|
|
image = image.resize((mask_w, mask_h))
|
|
cropped_boxes = []
|
|
cropped_images = []
|
|
not_crop = []
|
|
filter_id = []
|
|
|
|
|
|
for _, mask in enumerate(annotations):
|
|
if np.sum(mask["segmentation"]) <= 100:
|
|
filter_id.append(_)
|
|
continue
|
|
bbox = get_bbox_from_mask(mask["segmentation"])
|
|
cropped_boxes.append(segment_image(image, bbox))
|
|
|
|
cropped_images.append(bbox)
|
|
|
|
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
|
|
|
|
|
def box_prompt(masks, bbox, target_height, target_width):
|
|
h = masks.shape[1]
|
|
w = masks.shape[2]
|
|
if h != target_height or w != target_width:
|
|
bbox = [
|
|
int(bbox[0] * w / target_width),
|
|
int(bbox[1] * h / target_height),
|
|
int(bbox[2] * w / target_width),
|
|
int(bbox[3] * h / target_height),
|
|
]
|
|
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
|
|
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
|
|
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
|
|
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
|
|
|
|
|
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
|
|
|
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
|
|
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
|
|
|
union = bbox_area + orig_masks_area - masks_area
|
|
IoUs = masks_area / union
|
|
max_iou_index = torch.argmax(IoUs)
|
|
|
|
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
|
|
|
|
|
def point_prompt(masks, points, point_label, target_height, target_width):
|
|
h = masks[0]["segmentation"].shape[0]
|
|
w = masks[0]["segmentation"].shape[1]
|
|
if h != target_height or w != target_width:
|
|
points = [
|
|
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
|
|
for point in points
|
|
]
|
|
onemask = np.zeros((h, w))
|
|
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
|
|
for i, annotation in enumerate(masks):
|
|
if type(annotation) == dict:
|
|
mask = annotation['segmentation']
|
|
else:
|
|
mask = annotation
|
|
for i, point in enumerate(points):
|
|
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
|
|
onemask[mask] = 1
|
|
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
|
|
onemask[mask] = 0
|
|
onemask = onemask >= 1
|
|
return onemask, 0
|
|
|
|
|
|
def text_prompt(annotations, text, img_path, device):
|
|
cropped_boxes, cropped_images, not_crop, filter_id, annotations_ = crop_image(
|
|
annotations, img_path
|
|
)
|
|
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
|
scores = retriev(
|
|
clip_model, preprocess, cropped_boxes, text, device=device
|
|
)
|
|
max_idx = scores.argsort()
|
|
max_idx = max_idx[-1]
|
|
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
|
return annotations_[max_idx]["segmentation"], max_idx
|
|
|