|
|
|
""" |
|
Common modules |
|
""" |
|
|
|
from copy import copy |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import requests |
|
import torch |
|
import torch.nn as nn |
|
from PIL import Image, ImageOps |
|
from torch.cuda import amp |
|
|
|
from ultralytics.nn.autobackend import AutoBackend |
|
from ultralytics.yolo.data.augment import LetterBox |
|
from ultralytics.yolo.utils import LOGGER, colorstr |
|
from ultralytics.yolo.utils.files import increment_path |
|
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh |
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box |
|
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode |
|
|
|
|
|
class AutoShape(nn.Module): |
|
"""YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS.""" |
|
conf = 0.25 |
|
iou = 0.45 |
|
agnostic = False |
|
multi_label = False |
|
classes = None |
|
max_det = 1000 |
|
amp = False |
|
|
|
def __init__(self, model, verbose=True): |
|
"""Initializes object and copies attributes from model object.""" |
|
super().__init__() |
|
if verbose: |
|
LOGGER.info('Adding AutoShape... ') |
|
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) |
|
self.dmb = isinstance(model, AutoBackend) |
|
self.pt = not self.dmb or model.pt |
|
self.model = model.eval() |
|
if self.pt: |
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] |
|
m.inplace = False |
|
m.export = True |
|
|
|
def _apply(self, fn): |
|
"""Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers.""" |
|
self = super()._apply(fn) |
|
if self.pt: |
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] |
|
m.stride = fn(m.stride) |
|
m.grid = list(map(fn, m.grid)) |
|
if isinstance(m.anchor_grid, list): |
|
m.anchor_grid = list(map(fn, m.anchor_grid)) |
|
return self |
|
|
|
@smart_inference_mode() |
|
def forward(self, ims, size=640, augment=False, profile=False): |
|
"""Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dt = (Profile(), Profile(), Profile()) |
|
with dt[0]: |
|
if isinstance(size, int): |
|
size = (size, size) |
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) |
|
autocast = self.amp and (p.device.type != 'cpu') |
|
if isinstance(ims, torch.Tensor): |
|
with amp.autocast(autocast): |
|
return self.model(ims.to(p.device).type_as(p), augment=augment) |
|
|
|
|
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) |
|
shape0, shape1, files = [], [], [] |
|
for i, im in enumerate(ims): |
|
f = f'image{i}' |
|
if isinstance(im, (str, Path)): |
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im |
|
im = np.asarray(ImageOps.exif_transpose(im)) |
|
elif isinstance(im, Image.Image): |
|
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f |
|
files.append(Path(f).with_suffix('.jpg').name) |
|
if im.shape[0] < 5: |
|
im = im.transpose((1, 2, 0)) |
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) |
|
s = im.shape[:2] |
|
shape0.append(s) |
|
g = max(size) / max(s) |
|
shape1.append([y * g for y in s]) |
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) |
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size |
|
x = [LetterBox(shape1, auto=False)(image=im)['img'] for im in ims] |
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) |
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 |
|
|
|
with amp.autocast(autocast): |
|
|
|
with dt[1]: |
|
y = self.model(x, augment=augment) |
|
|
|
|
|
with dt[2]: |
|
y = non_max_suppression(y if self.dmb else y[0], |
|
self.conf, |
|
self.iou, |
|
self.classes, |
|
self.agnostic, |
|
self.multi_label, |
|
max_det=self.max_det) |
|
for i in range(n): |
|
scale_boxes(shape1, y[i][:, :4], shape0[i]) |
|
|
|
return Detections(ims, y, files, dt, self.names, x.shape) |
|
|
|
|
|
class Detections: |
|
""" YOLOv8 detections class for inference results""" |
|
|
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): |
|
"""Initialize object attributes for YOLO detection results.""" |
|
super().__init__() |
|
d = pred[0].device |
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] |
|
self.ims = ims |
|
self.pred = pred |
|
self.names = names |
|
self.files = files |
|
self.times = times |
|
self.xyxy = pred |
|
self.xywh = [xyxy2xywh(x) for x in pred] |
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] |
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] |
|
self.n = len(self.pred) |
|
self.t = tuple(x.t / self.n * 1E3 for x in times) |
|
self.s = tuple(shape) |
|
|
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): |
|
"""Return performance metrics and optionally cropped/save images or results.""" |
|
s, crops = '', [] |
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)): |
|
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' |
|
if pred.shape[0]: |
|
for c in pred[:, -1].unique(): |
|
n = (pred[:, -1] == c).sum() |
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " |
|
s = s.rstrip(', ') |
|
if show or save or render or crop: |
|
annotator = Annotator(im, example=str(self.names)) |
|
for *box, conf, cls in reversed(pred): |
|
label = f'{self.names[int(cls)]} {conf:.2f}' |
|
if crop: |
|
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None |
|
crops.append({ |
|
'box': box, |
|
'conf': conf, |
|
'cls': cls, |
|
'label': label, |
|
'im': save_one_box(box, im, file=file, save=save)}) |
|
else: |
|
annotator.box_label(box, label if labels else '', color=colors(cls)) |
|
im = annotator.im |
|
else: |
|
s += '(no detections)' |
|
|
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im |
|
if show: |
|
im.show(self.files[i]) |
|
if save: |
|
f = self.files[i] |
|
im.save(save_dir / f) |
|
if i == self.n - 1: |
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") |
|
if render: |
|
self.ims[i] = np.asarray(im) |
|
if pprint: |
|
s = s.lstrip('\n') |
|
return f'{s}\nSpeed: %.1fms preprocess, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t |
|
if crop: |
|
if save: |
|
LOGGER.info(f'Saved results to {save_dir}\n') |
|
return crops |
|
|
|
def show(self, labels=True): |
|
"""Displays YOLO results with detected bounding boxes.""" |
|
self._run(show=True, labels=labels) |
|
|
|
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False): |
|
"""Save detection results with optional labels to specified directory.""" |
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) |
|
self._run(save=True, labels=labels, save_dir=save_dir) |
|
|
|
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False): |
|
"""Crops images into detections and saves them if 'save' is True.""" |
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None |
|
return self._run(crop=True, save=save, save_dir=save_dir) |
|
|
|
def render(self, labels=True): |
|
"""Renders detected objects and returns images.""" |
|
self._run(render=True, labels=labels) |
|
return self.ims |
|
|
|
def pandas(self): |
|
"""Return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]).""" |
|
import pandas |
|
new = copy(self) |
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' |
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' |
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): |
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] |
|
setattr(new, k, [pandas.DataFrame(x, columns=c) for x in a]) |
|
return new |
|
|
|
def tolist(self): |
|
"""Return a list of Detections objects, i.e. 'for result in results.tolist():'.""" |
|
r = range(self.n) |
|
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] |
|
|
|
|
|
|
|
return x |
|
|
|
def print(self): |
|
"""Print the results of the `self._run()` function.""" |
|
LOGGER.info(self.__str__()) |
|
|
|
def __len__(self): |
|
return self.n |
|
|
|
def __str__(self): |
|
return self._run(pprint=True) |
|
|
|
def __repr__(self): |
|
"""Returns a printable representation of the object.""" |
|
return f'YOLOv8 {self.__class__} instance\n' + self.__str__() |
|
|