|
import numpy as np
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
import cv2
|
|
import torch
|
|
|
|
|
|
def fast_process(
|
|
annotations,
|
|
image,
|
|
device,
|
|
scale,
|
|
better_quality=False,
|
|
mask_random_color=True,
|
|
bbox=None,
|
|
use_retina=True,
|
|
withContours=True,
|
|
):
|
|
if isinstance(annotations[0], dict):
|
|
annotations = [annotation['segmentation'] for annotation in annotations]
|
|
|
|
original_h = image.height
|
|
original_w = image.width
|
|
if better_quality:
|
|
if isinstance(annotations[0], torch.Tensor):
|
|
annotations = np.array(annotations.cpu())
|
|
for i, mask in enumerate(annotations):
|
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
|
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
|
if device == 'cpu':
|
|
annotations = np.array(annotations)
|
|
inner_mask = fast_show_mask(
|
|
annotations,
|
|
plt.gca(),
|
|
random_color=mask_random_color,
|
|
bbox=bbox,
|
|
retinamask=use_retina,
|
|
target_height=original_h,
|
|
target_width=original_w,
|
|
)
|
|
else:
|
|
if isinstance(annotations[0], np.ndarray):
|
|
annotations = torch.from_numpy(annotations)
|
|
inner_mask = fast_show_mask_gpu(
|
|
annotations,
|
|
plt.gca(),
|
|
random_color=mask_random_color,
|
|
bbox=bbox,
|
|
retinamask=use_retina,
|
|
target_height=original_h,
|
|
target_width=original_w,
|
|
)
|
|
if isinstance(annotations, torch.Tensor):
|
|
annotations = annotations.cpu().numpy()
|
|
|
|
if withContours:
|
|
contour_all = []
|
|
temp = np.zeros((original_h, original_w, 1))
|
|
for i, mask in enumerate(annotations):
|
|
if type(mask) == dict:
|
|
mask = mask['segmentation']
|
|
annotation = mask.astype(np.uint8)
|
|
if use_retina == False:
|
|
annotation = cv2.resize(
|
|
annotation,
|
|
(original_w, original_h),
|
|
interpolation=cv2.INTER_NEAREST,
|
|
)
|
|
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
for contour in contours:
|
|
contour_all.append(contour)
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
|
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
|
|
image = image.convert('RGBA')
|
|
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
image.paste(overlay_inner, (0, 0), overlay_inner)
|
|
|
|
if withContours:
|
|
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
|
image.paste(overlay_contour, (0, 0), overlay_contour)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def fast_show_mask(
|
|
annotation,
|
|
ax,
|
|
random_color=False,
|
|
bbox=None,
|
|
retinamask=True,
|
|
target_height=960,
|
|
target_width=960,
|
|
):
|
|
mask_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
|
|
areas = np.sum(annotation, axis=(1, 2))
|
|
sorted_indices = np.argsort(areas)[::1]
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).argmax(axis=0)
|
|
if random_color == True:
|
|
color = np.random.random((mask_sum, 1, 1, 3))
|
|
else:
|
|
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
|
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
|
visual = np.concatenate([color, transparency], axis=-1)
|
|
mask_image = np.expand_dims(annotation, -1) * visual
|
|
|
|
mask = np.zeros((height, weight, 4))
|
|
|
|
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices]
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
if retinamask == False:
|
|
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
return mask
|
|
|
|
|
|
def fast_show_mask_gpu(
|
|
annotation,
|
|
ax,
|
|
random_color=False,
|
|
bbox=None,
|
|
retinamask=True,
|
|
target_height=960,
|
|
target_width=960,
|
|
):
|
|
device = annotation.device
|
|
mask_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
areas = torch.sum(annotation, dim=(1, 2))
|
|
sorted_indices = torch.argsort(areas, descending=False)
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
|
if random_color == True:
|
|
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
|
else:
|
|
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
|
[30 / 255, 144 / 255, 255 / 255]
|
|
).to(device)
|
|
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
|
visual = torch.cat([color, transparency], dim=-1)
|
|
mask_image = torch.unsqueeze(annotation, -1) * visual
|
|
|
|
mask = torch.zeros((height, weight, 4)).to(device)
|
|
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices]
|
|
mask_cpu = mask.cpu().numpy()
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(
|
|
plt.Rectangle(
|
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
|
)
|
|
)
|
|
if retinamask == False:
|
|
mask_cpu = cv2.resize(
|
|
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
|
)
|
|
return mask_cpu
|
|
|