|
from ultralytics import YOLO
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
import cv2
|
|
import torch
|
|
from PIL import Image
|
|
|
|
model = YOLO('checkpoints/FastSAM.pt')
|
|
|
|
|
|
def fast_process(annotations, image, high_quality, device):
|
|
if isinstance(annotations[0],dict):
|
|
annotations = [annotation['segmentation'] for annotation in annotations]
|
|
|
|
original_h = image.height
|
|
original_w = image.width
|
|
fig = plt.figure(figsize=(10, 10))
|
|
plt.imshow(image)
|
|
if high_quality == True:
|
|
if isinstance(annotations[0],torch.Tensor):
|
|
annotations = np.array(annotations.cpu())
|
|
for i, mask in enumerate(annotations):
|
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
|
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
|
if device == 'cpu':
|
|
annotations = np.array(annotations)
|
|
fast_show_mask(annotations,
|
|
plt.gca(),
|
|
bbox=None,
|
|
points=None,
|
|
pointlabel=None,
|
|
retinamask=True,
|
|
target_height=original_h,
|
|
target_width=original_w)
|
|
else:
|
|
if isinstance(annotations[0],np.ndarray):
|
|
annotations = torch.from_numpy(annotations)
|
|
fast_show_mask_gpu(annotations,
|
|
plt.gca(),
|
|
bbox=None,
|
|
points=None,
|
|
pointlabel=None)
|
|
if isinstance(annotations, torch.Tensor):
|
|
annotations = annotations.cpu().numpy()
|
|
if high_quality == True:
|
|
contour_all = []
|
|
temp = np.zeros((original_h, original_w,1))
|
|
for i, mask in enumerate(annotations):
|
|
if type(mask) == dict:
|
|
mask = mask['segmentation']
|
|
annotation = mask.astype(np.uint8)
|
|
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
for contour in contours:
|
|
contour_all.append(contour)
|
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
|
contour_mask = temp / 225 * color.reshape(1, 1, -1)
|
|
plt.imshow(contour_mask)
|
|
|
|
plt.axis('off')
|
|
plt.tight_layout()
|
|
return fig
|
|
|
|
|
|
|
|
def fast_show_mask(annotation, ax, bbox=None,
|
|
points=None, pointlabel=None,
|
|
retinamask=True, target_height=960,
|
|
target_width=960):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
|
|
areas = np.sum(annotation, axis=(1, 2))
|
|
sorted_indices = np.argsort(areas)[::1]
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).argmax(axis=0)
|
|
color = np.random.random((msak_sum,1,1,3))
|
|
transparency = np.ones((msak_sum,1,1,1)) * 0.6
|
|
visual = np.concatenate([color,transparency],axis=-1)
|
|
mask_image = np.expand_dims(annotation,-1) * visual
|
|
|
|
show = np.zeros((height,weight,4))
|
|
|
|
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
show[h_indices, w_indices, :] = mask_image[indices]
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
if points is not None:
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
|
|
if retinamask==False:
|
|
show = cv2.resize(show,(target_width,target_height),interpolation=cv2.INTER_NEAREST)
|
|
ax.imshow(show)
|
|
|
|
|
|
def fast_show_mask_gpu(annotation, ax,
|
|
bbox=None, points=None,
|
|
pointlabel=None):
|
|
msak_sum = annotation.shape[0]
|
|
height = annotation.shape[1]
|
|
weight = annotation.shape[2]
|
|
areas = torch.sum(annotation, dim=(1, 2))
|
|
sorted_indices = torch.argsort(areas, descending=False)
|
|
annotation = annotation[sorted_indices]
|
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
|
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
|
|
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
|
|
visual = torch.cat([color,transparency],dim=-1)
|
|
mask_image = torch.unsqueeze(annotation,-1) * visual
|
|
|
|
show = torch.zeros((height,weight,4)).to(annotation.device)
|
|
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
|
|
|
show[h_indices, w_indices, :] = mask_image[indices]
|
|
show_cpu = show.cpu().numpy()
|
|
if bbox is not None:
|
|
x1, y1, x2, y2 = bbox
|
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
|
if points is not None:
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
|
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
ax.imshow(show_cpu)
|
|
|
|
|
|
|
|
def predict(input, input_size=512, high_visual_quality=True):
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
input_size = int(input_size)
|
|
results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
|
pil_image = fast_process(annotations=results[0].masks.data,
|
|
image=input, high_quality=high_visual_quality, device=device)
|
|
return pil_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface(fn=predict,
|
|
inputs=[gr.components.Image(type='pil'),
|
|
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64),
|
|
gr.components.Checkbox(value=True)],
|
|
outputs=['plot'],
|
|
|
|
|
|
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
|
["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
|
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
|
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
|
cache_examples=False,
|
|
)
|
|
|
|
demo.launch() |