|
from ultralytics import YOLO |
|
import gradio as gr |
|
import torch |
|
from utils.tools_gradio import fast_process |
|
from utils.tools import format_results, box_prompt, point_prompt, text_prompt |
|
from PIL import ImageDraw |
|
import numpy as np |
|
|
|
|
|
model = YOLO('./weights/FastSAM.pt') |
|
|
|
device = torch.device( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else "mps" |
|
if torch.backends.mps.is_available() |
|
else "cpu" |
|
) |
|
|
|
|
|
title = "<center><strong><font size='8'>๐ Fast Segment Anything ๐ค</font></strong></center>" |
|
|
|
news = """ # ๐ News |
|
๐ฅ 2023/07/14: Add a "wider result" button in text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/95)). |
|
|
|
๐ฅ 2023/06/29: Support the text mode (Thanks for [gaoxinge](https://github.com/CASIA-IVA-Lab/FastSAM/pull/47)). |
|
|
|
๐ฅ 2023/06/26: Support the points mode. (Better and faster interaction will come soon!) |
|
|
|
๐ฅ 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment. |
|
""" |
|
|
|
description_e = """This is a demo on Github project ๐ [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star โญ๏ธ to it. |
|
|
|
๐ฏ Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon. |
|
|
|
โ๏ธ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. |
|
|
|
๐ To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. |
|
|
|
๐ฃ You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) |
|
|
|
๐ A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. |
|
|
|
๐ Check out our [Model Card ๐](https://huggingface.co/An-619/FastSAM) |
|
|
|
""" |
|
|
|
description_p = """ # ๐ฏ Instructions for points mode |
|
This is a demo on Github project ๐ [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star โญ๏ธ to it. |
|
|
|
1. Upload an image or choose an example. |
|
|
|
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented). |
|
|
|
3. Add points one by one on the image. |
|
|
|
4. Click the 'Segment with points prompt' button to get the segmentation results. |
|
|
|
**5. If you get Error, click the 'Clear points' button and try again may help.** |
|
|
|
""" |
|
|
|
examples = [["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"], |
|
["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"]] |
|
|
|
default_example = examples[0] |
|
|
|
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" |
|
|
|
|
|
def segment_everything( |
|
input, |
|
input_size=1024, |
|
iou_threshold=0.7, |
|
conf_threshold=0.25, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
text="", |
|
wider=False, |
|
mask_random_color=True, |
|
): |
|
input_size = int(input_size) |
|
|
|
w, h = input.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
input = input.resize((new_w, new_h)) |
|
|
|
results = model(input, |
|
device=device, |
|
retina_masks=True, |
|
iou=iou_threshold, |
|
conf=conf_threshold, |
|
imgsz=input_size,) |
|
|
|
if len(text) > 0: |
|
results = format_results(results[0], 0) |
|
annotations, _ = text_prompt(results, text, input, device=device, wider=wider) |
|
annotations = np.array([annotations]) |
|
else: |
|
annotations = results[0].masks.data |
|
|
|
fig = fast_process(annotations=annotations, |
|
image=input, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours,) |
|
return fig |
|
|
|
|
|
def segment_with_points( |
|
input, |
|
input_size=1024, |
|
iou_threshold=0.7, |
|
conf_threshold=0.25, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=True, |
|
): |
|
global global_points |
|
global global_point_label |
|
|
|
input_size = int(input_size) |
|
|
|
w, h = input.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
input = input.resize((new_w, new_h)) |
|
|
|
scaled_points = [[int(x * scale) for x in point] for point in global_points] |
|
|
|
results = model(input, |
|
device=device, |
|
retina_masks=True, |
|
iou=iou_threshold, |
|
conf=conf_threshold, |
|
imgsz=input_size,) |
|
|
|
results = format_results(results[0], 0) |
|
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w) |
|
annotations = np.array([annotations]) |
|
|
|
fig = fast_process(annotations=annotations, |
|
image=input, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours,) |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
return fig, None |
|
|
|
|
|
def get_points_with_draw(image, label, evt: gr.SelectData): |
|
global global_points |
|
global global_point_label |
|
|
|
x, y = evt.index[0], evt.index[1] |
|
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255) |
|
global_points.append([x, y]) |
|
global_point_label.append(1 if label == 'Add Mask' else 0) |
|
|
|
print(x, y, label == 'Add Mask') |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color) |
|
return image |
|
|
|
|
|
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil') |
|
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil') |
|
cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil') |
|
|
|
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil') |
|
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil') |
|
segm_img_t = gr.Image(label="Segmented Image with text", interactive=False, type='pil') |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
|
|
input_size_slider = gr.components.Slider(minimum=512, |
|
maximum=1024, |
|
value=1024, |
|
step=64, |
|
label='Input_size', |
|
info='Our model was trained on a size of 1024') |
|
|
|
with gr.Blocks(css=css, title='Fast Segment Anything') as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown(title) |
|
|
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown(news) |
|
|
|
with gr.Tab("Everything mode"): |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_e.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_e.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_size_slider.render() |
|
|
|
with gr.Row(): |
|
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks') |
|
|
|
with gr.Column(): |
|
segment_btn_e = gr.Button("Segment Everything", variant='primary') |
|
clear_btn_e = gr.Button("Clear", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below โฌ๏ธ") |
|
gr.Examples(examples=examples, |
|
inputs=[cond_img_e], |
|
outputs=segm_img_e, |
|
fn=segment_everything, |
|
cache_examples=True, |
|
examples_per_page=4) |
|
|
|
with gr.Column(): |
|
with gr.Accordion("Advanced options", open=False): |
|
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations') |
|
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold') |
|
with gr.Row(): |
|
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx') |
|
with gr.Column(): |
|
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks') |
|
|
|
|
|
gr.Markdown(description_e) |
|
|
|
segment_btn_e.click(segment_everything, |
|
inputs=[ |
|
cond_img_e, |
|
input_size_slider, |
|
iou_threshold, |
|
conf_threshold, |
|
mor_check, |
|
contour_check, |
|
retina_check, |
|
], |
|
outputs=segm_img_e) |
|
|
|
with gr.Tab("Points mode"): |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_p.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_p.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)") |
|
|
|
with gr.Column(): |
|
segment_btn_p = gr.Button("Segment with points prompt", variant='primary') |
|
clear_btn_p = gr.Button("Clear points", variant='secondary') |
|
|
|
gr.Markdown("Try some of the examples below โฌ๏ธ") |
|
gr.Examples(examples=examples, |
|
inputs=[cond_img_p], |
|
|
|
|
|
|
|
examples_per_page=4) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(description_p) |
|
|
|
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) |
|
|
|
segment_btn_p.click(segment_with_points, |
|
inputs=[cond_img_p], |
|
outputs=[segm_img_p, cond_img_p]) |
|
|
|
with gr.Tab("Text mode"): |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_t.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_t.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_size_slider_t = gr.components.Slider(minimum=512, |
|
maximum=1024, |
|
value=1024, |
|
step=64, |
|
label='Input_size', |
|
info='Our model was trained on a size of 1024') |
|
with gr.Row(): |
|
with gr.Column(): |
|
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks') |
|
text_box = gr.Textbox(label="text prompt", value="a black dog") |
|
|
|
with gr.Column(): |
|
segment_btn_t = gr.Button("Segment with text", variant='primary') |
|
clear_btn_t = gr.Button("Clear", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below โฌ๏ธ") |
|
gr.Examples(examples=[["examples/dogs.jpg"], ["examples/fruits.jpg"], ["examples/flowers.jpg"]], |
|
inputs=[cond_img_t], |
|
|
|
|
|
|
|
examples_per_page=4) |
|
|
|
with gr.Column(): |
|
with gr.Accordion("Advanced options", open=False): |
|
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations') |
|
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold') |
|
with gr.Row(): |
|
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx') |
|
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks') |
|
wider_check = gr.Checkbox(value=False, label='wider', info='wider result') |
|
|
|
|
|
gr.Markdown(description_e) |
|
|
|
segment_btn_t.click(segment_everything, |
|
inputs=[ |
|
cond_img_t, |
|
input_size_slider_t, |
|
iou_threshold, |
|
conf_threshold, |
|
mor_check, |
|
contour_check, |
|
retina_check, |
|
text_box, |
|
wider_check, |
|
], |
|
outputs=segm_img_t) |
|
|
|
def clear(): |
|
return None, None |
|
|
|
def clear_text(): |
|
return None, None, None |
|
|
|
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e]) |
|
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) |
|
clear_btn_t.click(clear_text, outputs=[cond_img_p, segm_img_p, text_box]) |
|
|
|
demo.queue() |
|
demo.launch() |
|
|