AAAAAAyq
commited on
Commit
•
9724c61
1
Parent(s):
086b1c4
Update the examples
Browse files- __pycache__/tools.cpython-39.pyc +0 -0
- app.py +71 -188
- app_debug.py +126 -44
- tools.py +395 -0
__pycache__/tools.cpython-39.pyc
ADDED
Binary file (11 kB). View file
|
|
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
from ultralytics import YOLO
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
import gradio as gr
|
5 |
-
import cv2
|
6 |
import torch
|
7 |
-
from
|
8 |
|
9 |
# Load the pre-trained model
|
10 |
model = YOLO('checkpoints/FastSAM.pt')
|
@@ -12,6 +9,13 @@ model = YOLO('checkpoints/FastSAM.pt')
|
|
12 |
# Description
|
13 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
16 |
|
17 |
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
@@ -28,161 +32,56 @@ description = """This is a demo on Github project 🏃 [Fast Segment Anything Mo
|
|
28 |
|
29 |
"""
|
30 |
|
31 |
-
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
|
32 |
-
["assets/
|
33 |
-
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
|
34 |
-
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
35 |
|
36 |
default_example = examples[0]
|
37 |
|
38 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
39 |
|
40 |
-
def fast_process(annotations, image, high_quality, device, scale):
|
41 |
-
if isinstance(annotations[0],dict):
|
42 |
-
annotations = [annotation['segmentation'] for annotation in annotations]
|
43 |
-
|
44 |
-
original_h = image.height
|
45 |
-
original_w = image.width
|
46 |
-
if high_quality == True:
|
47 |
-
if isinstance(annotations[0],torch.Tensor):
|
48 |
-
annotations = np.array(annotations.cpu())
|
49 |
-
for i, mask in enumerate(annotations):
|
50 |
-
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
51 |
-
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
52 |
-
if device == 'cpu':
|
53 |
-
annotations = np.array(annotations)
|
54 |
-
inner_mask = fast_show_mask(annotations,
|
55 |
-
plt.gca(),
|
56 |
-
bbox=None,
|
57 |
-
points=None,
|
58 |
-
pointlabel=None,
|
59 |
-
retinamask=True,
|
60 |
-
target_height=original_h,
|
61 |
-
target_width=original_w)
|
62 |
-
else:
|
63 |
-
if isinstance(annotations[0],np.ndarray):
|
64 |
-
annotations = torch.from_numpy(annotations)
|
65 |
-
inner_mask = fast_show_mask_gpu(annotations,
|
66 |
-
plt.gca(),
|
67 |
-
bbox=None,
|
68 |
-
points=None,
|
69 |
-
pointlabel=None)
|
70 |
-
if isinstance(annotations, torch.Tensor):
|
71 |
-
annotations = annotations.cpu().numpy()
|
72 |
-
|
73 |
-
if high_quality:
|
74 |
-
contour_all = []
|
75 |
-
temp = np.zeros((original_h, original_w,1))
|
76 |
-
for i, mask in enumerate(annotations):
|
77 |
-
if type(mask) == dict:
|
78 |
-
mask = mask['segmentation']
|
79 |
-
annotation = mask.astype(np.uint8)
|
80 |
-
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
81 |
-
for contour in contours:
|
82 |
-
contour_all.append(contour)
|
83 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
84 |
-
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
85 |
-
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
86 |
-
image = image.convert('RGBA')
|
87 |
-
|
88 |
-
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
89 |
-
image.paste(overlay_inner, (0, 0), overlay_inner)
|
90 |
-
|
91 |
-
if high_quality:
|
92 |
-
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
93 |
-
image.paste(overlay_contour, (0, 0), overlay_contour)
|
94 |
-
|
95 |
-
return image
|
96 |
-
|
97 |
-
# CPU post process
|
98 |
-
def fast_show_mask(annotation, ax, bbox=None,
|
99 |
-
points=None, pointlabel=None,
|
100 |
-
retinamask=True, target_height=960,
|
101 |
-
target_width=960):
|
102 |
-
msak_sum = annotation.shape[0]
|
103 |
-
height = annotation.shape[1]
|
104 |
-
weight = annotation.shape[2]
|
105 |
-
# 将annotation 按照面积 排序
|
106 |
-
areas = np.sum(annotation, axis=(1, 2))
|
107 |
-
sorted_indices = np.argsort(areas)[::1]
|
108 |
-
annotation = annotation[sorted_indices]
|
109 |
-
|
110 |
-
index = (annotation != 0).argmax(axis=0)
|
111 |
-
color = np.random.random((msak_sum,1,1,3))
|
112 |
-
transparency = np.ones((msak_sum,1,1,1)) * 0.6
|
113 |
-
visual = np.concatenate([color,transparency],axis=-1)
|
114 |
-
mask_image = np.expand_dims(annotation,-1) * visual
|
115 |
-
|
116 |
-
mask = np.zeros((height,weight,4))
|
117 |
-
|
118 |
-
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
119 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
120 |
-
# 使用向量化索引更新show的值
|
121 |
-
mask[h_indices, w_indices, :] = mask_image[indices]
|
122 |
-
if bbox is not None:
|
123 |
-
x1, y1, x2, y2 = bbox
|
124 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
125 |
-
# draw point
|
126 |
-
if points is not None:
|
127 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
128 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
129 |
-
|
130 |
-
if retinamask==False:
|
131 |
-
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
132 |
-
|
133 |
-
return mask
|
134 |
-
|
135 |
-
|
136 |
-
def fast_show_mask_gpu(annotation, ax,
|
137 |
-
bbox=None, points=None,
|
138 |
-
pointlabel=None):
|
139 |
-
msak_sum = annotation.shape[0]
|
140 |
-
height = annotation.shape[1]
|
141 |
-
weight = annotation.shape[2]
|
142 |
-
areas = torch.sum(annotation, dim=(1, 2))
|
143 |
-
sorted_indices = torch.argsort(areas, descending=False)
|
144 |
-
annotation = annotation[sorted_indices]
|
145 |
-
# 找每个位置第一个非零值下标
|
146 |
-
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
147 |
-
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
|
148 |
-
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
|
149 |
-
visual = torch.cat([color,transparency],dim=-1)
|
150 |
-
mask_image = torch.unsqueeze(annotation,-1) * visual
|
151 |
-
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
152 |
-
mask = torch.zeros((height,weight,4)).to(annotation.device)
|
153 |
-
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
154 |
-
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
155 |
-
# 使用向量化索引更新show的值
|
156 |
-
mask[h_indices, w_indices, :] = mask_image[indices]
|
157 |
-
mask_cpu = mask.cpu().numpy()
|
158 |
-
if bbox is not None:
|
159 |
-
x1, y1, x2, y2 = bbox
|
160 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
161 |
-
# draw point
|
162 |
-
if points is not None:
|
163 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
164 |
-
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
165 |
-
return mask_cpu
|
166 |
-
|
167 |
-
|
168 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
169 |
|
170 |
-
def segment_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
input_size = int(input_size) # 确保 imgsz 是整数
|
172 |
-
|
173 |
# Thanks for the suggestion by hysts in HuggingFace.
|
174 |
w, h = input.size
|
175 |
scale = input_size / max(w, h)
|
176 |
new_w = int(w * scale)
|
177 |
new_h = int(h * scale)
|
178 |
input = input.resize((new_w, new_h))
|
179 |
-
|
180 |
-
results = model(input,
|
|
|
|
|
|
|
|
|
|
|
181 |
fig = fast_process(annotations=results[0].masks.data,
|
182 |
-
image=input,
|
183 |
-
device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
return fig
|
185 |
|
|
|
186 |
# input_size=1024
|
187 |
# high_quality_visual=True
|
188 |
# inp = 'assets/sa_192.jpg'
|
@@ -193,41 +92,50 @@ def segment_image(input, input_size=1024, high_visual_quality=True, iou_threshol
|
|
193 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
194 |
# image=input, high_quality=high_quality_visual, device=device)
|
195 |
|
|
|
|
|
196 |
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
197 |
|
198 |
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
199 |
|
200 |
-
input_size_slider = gr.components.Slider(minimum=512,
|
|
|
|
|
|
|
|
|
201 |
|
202 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
203 |
with gr.Row():
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
209 |
# Images
|
210 |
with gr.Row(variant="panel"):
|
211 |
with gr.Column(scale=1):
|
212 |
cond_img.render()
|
213 |
-
|
214 |
with gr.Column(scale=1):
|
215 |
segm_img.render()
|
216 |
-
|
217 |
# Submit & Clear
|
218 |
with gr.Row():
|
219 |
with gr.Column():
|
220 |
input_size_slider.render()
|
221 |
-
|
222 |
with gr.Row():
|
223 |
-
|
224 |
-
|
225 |
with gr.Column():
|
226 |
segment_btn = gr.Button("Segment Anything", variant='primary')
|
227 |
-
|
228 |
# with gr.Column():
|
229 |
-
|
230 |
-
|
231 |
gr.Markdown("Try some of the examples below ⬇️")
|
232 |
gr.Examples(examples=examples,
|
233 |
inputs=[cond_img],
|
@@ -235,49 +143,24 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
235 |
fn=segment_image,
|
236 |
cache_examples=True,
|
237 |
examples_per_page=4)
|
238 |
-
# gr.Markdown("Try some of the examples below ⬇️")
|
239 |
-
# gr.Examples(examples=examples,
|
240 |
-
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
241 |
-
# outputs=output,
|
242 |
-
# fn=segment_image,
|
243 |
-
# examples_per_page=4)
|
244 |
|
245 |
with gr.Column():
|
246 |
with gr.Accordion("Advanced options", open=False):
|
247 |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
248 |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
|
|
249 |
|
250 |
# Description
|
251 |
gr.Markdown(description)
|
252 |
-
|
253 |
segment_btn.click(segment_image,
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
# def clear():
|
258 |
-
|
259 |
|
260 |
# clear_btn.click(fn=clear, inputs=None, outputs=None)
|
261 |
|
262 |
demo.queue()
|
263 |
demo.launch()
|
264 |
-
|
265 |
-
# app_interface = gr.Interface(fn=predict,
|
266 |
-
# inputs=[gr.Image(type='pil'),
|
267 |
-
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
268 |
-
# gr.components.Checkbox(value=True, label='high_visual_quality')],
|
269 |
-
# # outputs=['plot'],
|
270 |
-
# outputs=gr.Image(type='pil'),
|
271 |
-
# # examples=[["assets/sa_8776.jpg"]],
|
272 |
-
# # # ["assets/sa_1309.jpg", 1024]],
|
273 |
-
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
274 |
-
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
275 |
-
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
276 |
-
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
277 |
-
# cache_examples=True,
|
278 |
-
# title="Fast Segment Anything (Everything mode)"
|
279 |
-
# )
|
280 |
-
|
281 |
-
|
282 |
-
# app_interface.queue(concurrency_count=1, max_size=20)
|
283 |
-
# app_interface.launch()
|
|
|
1 |
from ultralytics import YOLO
|
|
|
|
|
2 |
import gradio as gr
|
|
|
3 |
import torch
|
4 |
+
from tools import fast_process
|
5 |
|
6 |
# Load the pre-trained model
|
7 |
model = YOLO('checkpoints/FastSAM.pt')
|
|
|
9 |
# Description
|
10 |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
11 |
|
12 |
+
news = """ # News
|
13 |
+
|
14 |
+
🔥 Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
15 |
+
|
16 |
+
# 🔥 Support the points mode and box mode, text mode will come soon.
|
17 |
+
"""
|
18 |
+
|
19 |
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
20 |
|
21 |
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
|
|
32 |
|
33 |
"""
|
34 |
|
35 |
+
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
36 |
+
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
|
|
|
|
37 |
|
38 |
default_example = examples[0]
|
39 |
|
40 |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def segment_image(
|
44 |
+
input,
|
45 |
+
input_size=1024,
|
46 |
+
iou_threshold=0.7,
|
47 |
+
conf_threshold=0.25,
|
48 |
+
better_quality=False,
|
49 |
+
mask_random_color=True,
|
50 |
+
withContours=True,
|
51 |
+
points=None,
|
52 |
+
bbox=None,
|
53 |
+
point_label=None,
|
54 |
+
use_retina=True,
|
55 |
+
):
|
56 |
input_size = int(input_size) # 确保 imgsz 是整数
|
57 |
+
|
58 |
# Thanks for the suggestion by hysts in HuggingFace.
|
59 |
w, h = input.size
|
60 |
scale = input_size / max(w, h)
|
61 |
new_w = int(w * scale)
|
62 |
new_h = int(h * scale)
|
63 |
input = input.resize((new_w, new_h))
|
64 |
+
|
65 |
+
results = model(input,
|
66 |
+
device=device,
|
67 |
+
retina_masks=True,
|
68 |
+
iou=iou_threshold,
|
69 |
+
conf=conf_threshold,
|
70 |
+
imgsz=input_size,)
|
71 |
fig = fast_process(annotations=results[0].masks.data,
|
72 |
+
image=input,
|
73 |
+
device=device,
|
74 |
+
scale=(1024 // input_size),
|
75 |
+
better_quality=better_quality,
|
76 |
+
mask_random_color=mask_random_color,
|
77 |
+
points=points,
|
78 |
+
bbox=bbox,
|
79 |
+
point_label=point_label,
|
80 |
+
use_retina=use_retina,
|
81 |
+
withContours=withContours,)
|
82 |
return fig
|
83 |
|
84 |
+
|
85 |
# input_size=1024
|
86 |
# high_quality_visual=True
|
87 |
# inp = 'assets/sa_192.jpg'
|
|
|
92 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
93 |
# image=input, high_quality=high_quality_visual, device=device)
|
94 |
|
95 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
96 |
+
|
97 |
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
98 |
|
99 |
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
100 |
|
101 |
+
input_size_slider = gr.components.Slider(minimum=512,
|
102 |
+
maximum=1024,
|
103 |
+
value=1024,
|
104 |
+
step=64,
|
105 |
+
label='Input_size (Our model was trained on a size of 1024)')
|
106 |
|
107 |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
108 |
with gr.Row():
|
109 |
+
with gr.Column(scale=1):
|
110 |
+
# Title
|
111 |
+
gr.Markdown(title)
|
112 |
+
|
113 |
+
with gr.Column(scale=1):
|
114 |
+
# News
|
115 |
+
gr.Markdown(news)
|
116 |
+
|
117 |
# Images
|
118 |
with gr.Row(variant="panel"):
|
119 |
with gr.Column(scale=1):
|
120 |
cond_img.render()
|
121 |
+
|
122 |
with gr.Column(scale=1):
|
123 |
segm_img.render()
|
124 |
+
|
125 |
# Submit & Clear
|
126 |
with gr.Row():
|
127 |
with gr.Column():
|
128 |
input_size_slider.render()
|
129 |
+
|
130 |
with gr.Row():
|
131 |
+
contour_check = gr.Checkbox(value=True, label='withContours')
|
132 |
+
|
133 |
with gr.Column():
|
134 |
segment_btn = gr.Button("Segment Anything", variant='primary')
|
135 |
+
|
136 |
# with gr.Column():
|
137 |
+
# clear_btn = gr.Button("Clear", variant="primary")
|
138 |
+
|
139 |
gr.Markdown("Try some of the examples below ⬇️")
|
140 |
gr.Examples(examples=examples,
|
141 |
inputs=[cond_img],
|
|
|
143 |
fn=segment_image,
|
144 |
cache_examples=True,
|
145 |
examples_per_page=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
with gr.Column():
|
148 |
with gr.Accordion("Advanced options", open=False):
|
149 |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
150 |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
151 |
+
mor_check = gr.Checkbox(value=False, label='better_visual_quality')
|
152 |
|
153 |
# Description
|
154 |
gr.Markdown(description)
|
155 |
+
|
156 |
segment_btn.click(segment_image,
|
157 |
+
inputs=[cond_img, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check],
|
158 |
+
outputs=segm_img)
|
159 |
+
|
160 |
# def clear():
|
161 |
+
# return None, None
|
162 |
|
163 |
# clear_btn.click(fn=clear, inputs=None, outputs=None)
|
164 |
|
165 |
demo.queue()
|
166 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_debug.py
CHANGED
@@ -4,22 +4,45 @@ import matplotlib.pyplot as plt
|
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
import torch
|
7 |
-
# import queue
|
8 |
-
# import threading
|
9 |
from PIL import Image
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
if isinstance(annotations[0],dict):
|
17 |
annotations = [annotation['segmentation'] for annotation in annotations]
|
18 |
|
19 |
original_h = image.height
|
20 |
original_w = image.width
|
21 |
-
# fig = plt.figure(figsize=(10, 10))
|
22 |
-
# plt.imshow(image)
|
23 |
if high_quality == True:
|
24 |
if isinstance(annotations[0],torch.Tensor):
|
25 |
annotations = np.array(annotations.cpu())
|
@@ -57,10 +80,9 @@ def fast_process(annotations, image, high_quality, device):
|
|
57 |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
58 |
for contour in contours:
|
59 |
contour_all.append(contour)
|
60 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
61 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
62 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
63 |
-
# plt.imshow(contour_mask)
|
64 |
image = image.convert('RGBA')
|
65 |
|
66 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
@@ -71,10 +93,6 @@ def fast_process(annotations, image, high_quality, device):
|
|
71 |
image.paste(overlay_contour, (0, 0), overlay_contour)
|
72 |
|
73 |
return image
|
74 |
-
# plt.axis('off')
|
75 |
-
# plt.tight_layout()
|
76 |
-
# return fig
|
77 |
-
|
78 |
|
79 |
# CPU post process
|
80 |
def fast_show_mask(annotation, ax, bbox=None,
|
@@ -111,7 +129,6 @@ def fast_show_mask(annotation, ax, bbox=None,
|
|
111 |
|
112 |
if retinamask==False:
|
113 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
114 |
-
# ax.imshow(mask)
|
115 |
|
116 |
return mask
|
117 |
|
@@ -145,19 +162,13 @@ def fast_show_mask_gpu(annotation, ax,
|
|
145 |
if points is not None:
|
146 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
147 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
148 |
-
# ax.imshow(mask_cpu)
|
149 |
return mask_cpu
|
150 |
|
151 |
|
152 |
-
# # 预测队列
|
153 |
-
# prediction_queue = queue.Queue(maxsize=5)
|
154 |
-
|
155 |
-
# # 线程锁
|
156 |
-
# lock = threading.Lock()
|
157 |
-
|
158 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
159 |
|
160 |
-
def
|
|
|
161 |
input_size = int(input_size) # 确保 imgsz 是整数
|
162 |
|
163 |
# Thanks for the suggestion by hysts in HuggingFace.
|
@@ -167,13 +178,13 @@ def predict(input, input_size=1024, high_visual_quality=True):
|
|
167 |
new_h = int(h * scale)
|
168 |
input = input.resize((new_w, new_h))
|
169 |
|
170 |
-
results = model(input, device=device, retina_masks=True, iou=
|
171 |
fig = fast_process(annotations=results[0].masks.data,
|
172 |
-
|
|
|
|
|
173 |
return fig
|
174 |
|
175 |
-
|
176 |
-
|
177 |
# input_size=1024
|
178 |
# high_quality_visual=True
|
179 |
# inp = 'assets/sa_192.jpg'
|
@@ -184,22 +195,93 @@ def predict(input, input_size=1024, high_visual_quality=True):
|
|
184 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
185 |
# image=input, high_quality=high_quality_visual, device=device)
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
import torch
|
|
|
|
|
7 |
from PIL import Image
|
8 |
|
9 |
+
# Load the pre-trained model
|
10 |
+
model = YOLO('checkpoints/FastSAM.pt')
|
11 |
|
12 |
+
# Description
|
13 |
+
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
14 |
|
15 |
+
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
16 |
+
|
17 |
+
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
18 |
+
|
19 |
+
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
20 |
+
|
21 |
+
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
22 |
+
|
23 |
+
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
24 |
+
|
25 |
+
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
26 |
+
|
27 |
+
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
28 |
+
|
29 |
+
"""
|
30 |
|
31 |
+
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
|
32 |
+
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
33 |
+
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
|
34 |
+
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
35 |
+
|
36 |
+
default_example = examples[0]
|
37 |
+
|
38 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
39 |
+
|
40 |
+
def fast_process(annotations, image, high_quality, device, scale):
|
41 |
if isinstance(annotations[0],dict):
|
42 |
annotations = [annotation['segmentation'] for annotation in annotations]
|
43 |
|
44 |
original_h = image.height
|
45 |
original_w = image.width
|
|
|
|
|
46 |
if high_quality == True:
|
47 |
if isinstance(annotations[0],torch.Tensor):
|
48 |
annotations = np.array(annotations.cpu())
|
|
|
80 |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
81 |
for contour in contours:
|
82 |
contour_all.append(contour)
|
83 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
84 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
85 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
|
86 |
image = image.convert('RGBA')
|
87 |
|
88 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
|
93 |
image.paste(overlay_contour, (0, 0), overlay_contour)
|
94 |
|
95 |
return image
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# CPU post process
|
98 |
def fast_show_mask(annotation, ax, bbox=None,
|
|
|
129 |
|
130 |
if retinamask==False:
|
131 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
|
132 |
|
133 |
return mask
|
134 |
|
|
|
162 |
if points is not None:
|
163 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
164 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
|
165 |
return mask_cpu
|
166 |
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
169 |
|
170 |
+
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
|
171 |
+
point = (evt.index[0],evt.index[1])
|
172 |
input_size = int(input_size) # 确保 imgsz 是整数
|
173 |
|
174 |
# Thanks for the suggestion by hysts in HuggingFace.
|
|
|
178 |
new_h = int(h * scale)
|
179 |
input = input.resize((new_w, new_h))
|
180 |
|
181 |
+
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
|
182 |
fig = fast_process(annotations=results[0].masks.data,
|
183 |
+
image=input, high_quality=high_visual_quality,
|
184 |
+
device=device, scale=(1024 // input_size),
|
185 |
+
points=)
|
186 |
return fig
|
187 |
|
|
|
|
|
188 |
# input_size=1024
|
189 |
# high_quality_visual=True
|
190 |
# inp = 'assets/sa_192.jpg'
|
|
|
195 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
196 |
# image=input, high_quality=high_quality_visual, device=device)
|
197 |
|
198 |
+
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
199 |
+
|
200 |
+
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
201 |
+
|
202 |
+
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')
|
203 |
+
|
204 |
+
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
205 |
+
with gr.Row():
|
206 |
+
# Title
|
207 |
+
gr.Markdown(title)
|
208 |
+
# # # Description
|
209 |
+
# # gr.Markdown(description)
|
210 |
+
|
211 |
+
# Images
|
212 |
+
with gr.Row(variant="panel"):
|
213 |
+
with gr.Column(scale=1):
|
214 |
+
cond_img.render()
|
215 |
+
|
216 |
+
with gr.Column(scale=1):
|
217 |
+
segm_img.render()
|
218 |
+
|
219 |
+
# Submit & Clear
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
input_size_slider.render()
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
|
226 |
+
|
227 |
+
with gr.Column():
|
228 |
+
segment_btn = gr.Button("Segment Anything", variant='primary')
|
229 |
+
|
230 |
+
# with gr.Column():
|
231 |
+
# clear_btn = gr.Button("Clear", variant="primary")
|
232 |
+
|
233 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
234 |
+
gr.Examples(examples=examples,
|
235 |
+
inputs=[cond_img],
|
236 |
+
outputs=segm_img,
|
237 |
+
fn=segment_image,
|
238 |
+
cache_examples=True,
|
239 |
+
examples_per_page=4)
|
240 |
+
# gr.Markdown("Try some of the examples below ⬇️")
|
241 |
+
# gr.Examples(examples=examples,
|
242 |
+
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
243 |
+
# outputs=output,
|
244 |
+
# fn=segment_image,
|
245 |
+
# examples_per_page=4)
|
246 |
+
|
247 |
+
with gr.Column():
|
248 |
+
with gr.Accordion("Advanced options", open=False):
|
249 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
250 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
251 |
+
|
252 |
+
# Description
|
253 |
+
gr.Markdown(description)
|
254 |
+
|
255 |
+
cond_img.select(segment_image, [], input_img)
|
256 |
+
|
257 |
+
segment_btn.click(segment_image,
|
258 |
+
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
259 |
+
outputs=segm_img)
|
260 |
+
|
261 |
+
# def clear():
|
262 |
+
# return None, None
|
263 |
+
|
264 |
+
# clear_btn.click(fn=clear, inputs=None, outputs=None)
|
265 |
+
|
266 |
+
demo.queue()
|
267 |
+
demo.launch()
|
268 |
+
|
269 |
+
# app_interface = gr.Interface(fn=predict,
|
270 |
+
# inputs=[gr.Image(type='pil'),
|
271 |
+
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
272 |
+
# gr.components.Checkbox(value=True, label='high_visual_quality')],
|
273 |
+
# # outputs=['plot'],
|
274 |
+
# outputs=gr.Image(type='pil'),
|
275 |
+
# # examples=[["assets/sa_8776.jpg"]],
|
276 |
+
# # # ["assets/sa_1309.jpg", 1024]],
|
277 |
+
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
278 |
+
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
279 |
+
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
280 |
+
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
281 |
+
# cache_examples=True,
|
282 |
+
# title="Fast Segment Anything (Everything mode)"
|
283 |
+
# )
|
284 |
+
|
285 |
+
|
286 |
+
# app_interface.queue(concurrency_count=1, max_size=20)
|
287 |
+
# app_interface.launch()
|
tools.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import clip
|
7 |
+
|
8 |
+
|
9 |
+
def convert_box_xywh_to_xyxy(box):
|
10 |
+
x1 = box[0]
|
11 |
+
y1 = box[1]
|
12 |
+
x2 = box[0] + box[2]
|
13 |
+
y2 = box[1] + box[3]
|
14 |
+
return [x1, y1, x2, y2]
|
15 |
+
|
16 |
+
|
17 |
+
def segment_image(image, bbox):
|
18 |
+
image_array = np.array(image)
|
19 |
+
segmented_image_array = np.zeros_like(image_array)
|
20 |
+
x1, y1, x2, y2 = bbox
|
21 |
+
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
|
22 |
+
segmented_image = Image.fromarray(segmented_image_array)
|
23 |
+
black_image = Image.new("RGB", image.size, (255, 255, 255))
|
24 |
+
# transparency_mask = np.zeros_like((), dtype=np.uint8)
|
25 |
+
transparency_mask = np.zeros(
|
26 |
+
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
|
27 |
+
)
|
28 |
+
transparency_mask[y1:y2, x1:x2] = 255
|
29 |
+
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
|
30 |
+
black_image.paste(segmented_image, mask=transparency_mask_image)
|
31 |
+
return black_image
|
32 |
+
|
33 |
+
|
34 |
+
def format_results(result, filter=0):
|
35 |
+
annotations = []
|
36 |
+
n = len(result.masks.data)
|
37 |
+
for i in range(n):
|
38 |
+
annotation = {}
|
39 |
+
mask = result.masks.data[i] == 1.0
|
40 |
+
|
41 |
+
if torch.sum(mask) < filter:
|
42 |
+
continue
|
43 |
+
annotation["id"] = i
|
44 |
+
annotation["segmentation"] = mask.cpu().numpy()
|
45 |
+
annotation["bbox"] = result.boxes.data[i]
|
46 |
+
annotation["score"] = result.boxes.conf[i]
|
47 |
+
annotation["area"] = annotation["segmentation"].sum()
|
48 |
+
annotations.append(annotation)
|
49 |
+
return annotations
|
50 |
+
|
51 |
+
|
52 |
+
def filter_masks(annotations): # filte the overlap mask
|
53 |
+
annotations.sort(key=lambda x: x["area"], reverse=True)
|
54 |
+
to_remove = set()
|
55 |
+
for i in range(0, len(annotations)):
|
56 |
+
a = annotations[i]
|
57 |
+
for j in range(i + 1, len(annotations)):
|
58 |
+
b = annotations[j]
|
59 |
+
if i != j and j not in to_remove:
|
60 |
+
# check if
|
61 |
+
if b["area"] < a["area"]:
|
62 |
+
if (a["segmentation"] & b["segmentation"]).sum() / b[
|
63 |
+
"segmentation"
|
64 |
+
].sum() > 0.8:
|
65 |
+
to_remove.add(j)
|
66 |
+
|
67 |
+
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
|
68 |
+
|
69 |
+
|
70 |
+
def get_bbox_from_mask(mask):
|
71 |
+
mask = mask.astype(np.uint8)
|
72 |
+
contours, hierarchy = cv2.findContours(
|
73 |
+
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
74 |
+
)
|
75 |
+
x1, y1, w, h = cv2.boundingRect(contours[0])
|
76 |
+
x2, y2 = x1 + w, y1 + h
|
77 |
+
if len(contours) > 1:
|
78 |
+
for b in contours:
|
79 |
+
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
|
80 |
+
# 将多个bbox合并成一个
|
81 |
+
x1 = min(x1, x_t)
|
82 |
+
y1 = min(y1, y_t)
|
83 |
+
x2 = max(x2, x_t + w_t)
|
84 |
+
y2 = max(y2, y_t + h_t)
|
85 |
+
h = y2 - y1
|
86 |
+
w = x2 - x1
|
87 |
+
return [x1, y1, x2, y2]
|
88 |
+
|
89 |
+
def fast_process(
|
90 |
+
annotations,
|
91 |
+
image,
|
92 |
+
device,
|
93 |
+
scale,
|
94 |
+
better_quality=False,
|
95 |
+
mask_random_color=True,
|
96 |
+
points=None,
|
97 |
+
bbox=None,
|
98 |
+
point_label=None,
|
99 |
+
use_retina=True,
|
100 |
+
withContours=True,
|
101 |
+
):
|
102 |
+
if isinstance(annotations[0], dict):
|
103 |
+
annotations = [annotation['segmentation'] for annotation in annotations]
|
104 |
+
|
105 |
+
original_h = image.height
|
106 |
+
original_w = image.width
|
107 |
+
if better_quality:
|
108 |
+
if isinstance(annotations[0], torch.Tensor):
|
109 |
+
annotations = np.array(annotations.cpu())
|
110 |
+
for i, mask in enumerate(annotations):
|
111 |
+
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
112 |
+
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
113 |
+
if device == 'cpu':
|
114 |
+
annotations = np.array(annotations)
|
115 |
+
inner_mask = fast_show_mask(
|
116 |
+
annotations,
|
117 |
+
plt.gca(),
|
118 |
+
random_color=mask_random_color,
|
119 |
+
bbox=bbox,
|
120 |
+
points=points,
|
121 |
+
pointlabel=point_label,
|
122 |
+
retinamask=use_retina,
|
123 |
+
target_height=original_h,
|
124 |
+
target_width=original_w,
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
if isinstance(annotations[0], np.ndarray):
|
128 |
+
annotations = torch.from_numpy(annotations)
|
129 |
+
inner_mask = fast_show_mask_gpu(
|
130 |
+
annotations,
|
131 |
+
plt.gca(),
|
132 |
+
random_color=mask_random_color,
|
133 |
+
bbox=bbox,
|
134 |
+
points=points,
|
135 |
+
pointlabel=point_label,
|
136 |
+
retinamask=use_retina,
|
137 |
+
target_height=original_h,
|
138 |
+
target_width=original_w,
|
139 |
+
)
|
140 |
+
if isinstance(annotations, torch.Tensor):
|
141 |
+
annotations = annotations.cpu().numpy()
|
142 |
+
|
143 |
+
if withContours:
|
144 |
+
contour_all = []
|
145 |
+
temp = np.zeros((original_h, original_w, 1))
|
146 |
+
for i, mask in enumerate(annotations):
|
147 |
+
if type(mask) == dict:
|
148 |
+
mask = mask['segmentation']
|
149 |
+
annotation = mask.astype(np.uint8)
|
150 |
+
if use_retina == False:
|
151 |
+
annotation = cv2.resize(
|
152 |
+
annotation,
|
153 |
+
(original_w, original_h),
|
154 |
+
interpolation=cv2.INTER_NEAREST,
|
155 |
+
)
|
156 |
+
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
157 |
+
for contour in contours:
|
158 |
+
contour_all.append(contour)
|
159 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
160 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
161 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
162 |
+
i
|
163 |
+
image = image.convert('RGBA')
|
164 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
165 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
166 |
+
|
167 |
+
if withContours:
|
168 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
169 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
170 |
+
|
171 |
+
return image
|
172 |
+
|
173 |
+
|
174 |
+
# CPU post process
|
175 |
+
def fast_show_mask(
|
176 |
+
annotation,
|
177 |
+
ax,
|
178 |
+
random_color=False,
|
179 |
+
bbox=None,
|
180 |
+
points=None,
|
181 |
+
pointlabel=None,
|
182 |
+
retinamask=True,
|
183 |
+
target_height=960,
|
184 |
+
target_width=960,
|
185 |
+
):
|
186 |
+
mask_sum = annotation.shape[0]
|
187 |
+
height = annotation.shape[1]
|
188 |
+
weight = annotation.shape[2]
|
189 |
+
# 将annotation 按照面积 排序
|
190 |
+
areas = np.sum(annotation, axis=(1, 2))
|
191 |
+
sorted_indices = np.argsort(areas)[::1]
|
192 |
+
annotation = annotation[sorted_indices]
|
193 |
+
|
194 |
+
index = (annotation != 0).argmax(axis=0)
|
195 |
+
if random_color == True:
|
196 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
197 |
+
else:
|
198 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
199 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
200 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
201 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
202 |
+
|
203 |
+
mask = np.zeros((height, weight, 4))
|
204 |
+
|
205 |
+
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
206 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
207 |
+
|
208 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
209 |
+
if bbox is not None:
|
210 |
+
x1, y1, x2, y2 = bbox
|
211 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
212 |
+
# draw point
|
213 |
+
if points is not None:
|
214 |
+
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
|
215 |
+
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
|
216 |
+
s=20,
|
217 |
+
c='y')
|
218 |
+
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
|
219 |
+
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
|
220 |
+
s=20,
|
221 |
+
c='m')
|
222 |
+
|
223 |
+
if retinamask == False:
|
224 |
+
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
225 |
+
|
226 |
+
return mask
|
227 |
+
|
228 |
+
|
229 |
+
def fast_show_mask_gpu(
|
230 |
+
annotation,
|
231 |
+
ax,
|
232 |
+
random_color=False,
|
233 |
+
bbox=None,
|
234 |
+
points=None,
|
235 |
+
pointlabel=None,
|
236 |
+
retinamask=True,
|
237 |
+
target_height=960,
|
238 |
+
target_width=960,
|
239 |
+
):
|
240 |
+
device = annotation.device
|
241 |
+
mask_sum = annotation.shape[0]
|
242 |
+
height = annotation.shape[1]
|
243 |
+
weight = annotation.shape[2]
|
244 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
245 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
246 |
+
annotation = annotation[sorted_indices]
|
247 |
+
# 找每个位置第一个非零值下标
|
248 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
249 |
+
if random_color == True:
|
250 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
251 |
+
else:
|
252 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
253 |
+
[30 / 255, 144 / 255, 255 / 255]
|
254 |
+
).to(device)
|
255 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
256 |
+
visual = torch.cat([color, transparency], dim=-1)
|
257 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
258 |
+
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
259 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
260 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
261 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
262 |
+
# 使用向量化索引更新show的值
|
263 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
264 |
+
mask_cpu = mask.cpu().numpy()
|
265 |
+
if bbox is not None:
|
266 |
+
x1, y1, x2, y2 = bbox
|
267 |
+
ax.add_patch(
|
268 |
+
plt.Rectangle(
|
269 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
270 |
+
)
|
271 |
+
)
|
272 |
+
# draw point
|
273 |
+
if points is not None:
|
274 |
+
plt.scatter(
|
275 |
+
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
|
276 |
+
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
|
277 |
+
s=20,
|
278 |
+
c="y",
|
279 |
+
)
|
280 |
+
plt.scatter(
|
281 |
+
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
|
282 |
+
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
|
283 |
+
s=20,
|
284 |
+
c="m",
|
285 |
+
)
|
286 |
+
if retinamask == False:
|
287 |
+
mask_cpu = cv2.resize(
|
288 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
289 |
+
)
|
290 |
+
return mask_cpu
|
291 |
+
|
292 |
+
|
293 |
+
# clip
|
294 |
+
@torch.no_grad()
|
295 |
+
def retriev(
|
296 |
+
model, preprocess, elements: [Image.Image], search_text: str, device
|
297 |
+
) -> int:
|
298 |
+
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
299 |
+
tokenized_text = clip.tokenize([search_text]).to(device)
|
300 |
+
stacked_images = torch.stack(preprocessed_images)
|
301 |
+
image_features = model.encode_image(stacked_images)
|
302 |
+
text_features = model.encode_text(tokenized_text)
|
303 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
304 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
305 |
+
probs = 100.0 * image_features @ text_features.T
|
306 |
+
return probs[:, 0].softmax(dim=0)
|
307 |
+
|
308 |
+
|
309 |
+
def crop_image(annotations, image_path):
|
310 |
+
image = Image.open(image_path)
|
311 |
+
ori_w, ori_h = image.size
|
312 |
+
mask_h, mask_w = annotations[0]["segmentation"].shape
|
313 |
+
if ori_w != mask_w or ori_h != mask_h:
|
314 |
+
image = image.resize((mask_w, mask_h))
|
315 |
+
cropped_boxes = []
|
316 |
+
cropped_images = []
|
317 |
+
not_crop = []
|
318 |
+
filter_id = []
|
319 |
+
# annotations, _ = filter_masks(annotations)
|
320 |
+
# filter_id = list(_)
|
321 |
+
for _, mask in enumerate(annotations):
|
322 |
+
if np.sum(mask["segmentation"]) <= 100:
|
323 |
+
filter_id.append(_)
|
324 |
+
continue
|
325 |
+
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
|
326 |
+
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
|
327 |
+
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
328 |
+
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
329 |
+
|
330 |
+
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
331 |
+
|
332 |
+
|
333 |
+
def box_prompt(masks, bbox, target_height, target_width):
|
334 |
+
h = masks.shape[1]
|
335 |
+
w = masks.shape[2]
|
336 |
+
if h != target_height or w != target_width:
|
337 |
+
bbox = [
|
338 |
+
int(bbox[0] * w / target_width),
|
339 |
+
int(bbox[1] * h / target_height),
|
340 |
+
int(bbox[2] * w / target_width),
|
341 |
+
int(bbox[3] * h / target_height),
|
342 |
+
]
|
343 |
+
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
|
344 |
+
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
|
345 |
+
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
|
346 |
+
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
|
347 |
+
|
348 |
+
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
349 |
+
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
350 |
+
|
351 |
+
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
|
352 |
+
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
353 |
+
|
354 |
+
union = bbox_area + orig_masks_area - masks_area
|
355 |
+
IoUs = masks_area / union
|
356 |
+
max_iou_index = torch.argmax(IoUs)
|
357 |
+
|
358 |
+
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
359 |
+
|
360 |
+
|
361 |
+
def point_prompt(masks, points, pointlabel, target_height, target_width): # numpy 处理
|
362 |
+
h = masks[0]["segmentation"].shape[0]
|
363 |
+
w = masks[0]["segmentation"].shape[1]
|
364 |
+
if h != target_height or w != target_width:
|
365 |
+
points = [
|
366 |
+
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
|
367 |
+
for point in points
|
368 |
+
]
|
369 |
+
onemask = np.zeros((h, w))
|
370 |
+
for i, annotation in enumerate(masks):
|
371 |
+
if type(annotation) == dict:
|
372 |
+
mask = annotation["segmentation"]
|
373 |
+
else:
|
374 |
+
mask = annotation
|
375 |
+
for i, point in enumerate(points):
|
376 |
+
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
|
377 |
+
onemask += mask
|
378 |
+
if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
|
379 |
+
onemask -= mask
|
380 |
+
onemask = onemask >= 1
|
381 |
+
return onemask, 0
|
382 |
+
|
383 |
+
|
384 |
+
def text_prompt(annotations, args):
|
385 |
+
cropped_boxes, cropped_images, not_crop, filter_id, annotaions = crop_image(
|
386 |
+
annotations, args.img_path
|
387 |
+
)
|
388 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=args.device)
|
389 |
+
scores = retriev(
|
390 |
+
clip_model, preprocess, cropped_boxes, args.text_prompt, device=args.device
|
391 |
+
)
|
392 |
+
max_idx = scores.argsort()
|
393 |
+
max_idx = max_idx[-1]
|
394 |
+
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
395 |
+
return annotaions[max_idx]["segmentation"], max_idx
|