import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 import torch import os import sys import clip def convert_box_xywh_to_xyxy(box): x1 = box[0] y1 = box[1] x2 = box[0] + box[2] y2 = box[1] + box[3] return [x1, y1, x2, y2] def segment_image(image, bbox): image_array = np.array(image) segmented_image_array = np.zeros_like(image_array) x1, y1, x2, y2 = bbox segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] segmented_image = Image.fromarray(segmented_image_array) black_image = Image.new("RGB", image.size, (255, 255, 255)) # transparency_mask = np.zeros_like((), dtype=np.uint8) transparency_mask = np.zeros( (image_array.shape[0], image_array.shape[1]), dtype=np.uint8 ) transparency_mask[y1:y2, x1:x2] = 255 transparency_mask_image = Image.fromarray(transparency_mask, mode="L") black_image.paste(segmented_image, mask=transparency_mask_image) return black_image def format_results(result, filter=0): annotations = [] n = len(result.masks.data) for i in range(n): annotation = {} mask = result.masks.data[i] == 1.0 if torch.sum(mask) < filter: continue annotation["id"] = i annotation["segmentation"] = mask.cpu().numpy() annotation["bbox"] = result.boxes.data[i] annotation["score"] = result.boxes.conf[i] annotation["area"] = annotation["segmentation"].sum() annotations.append(annotation) return annotations def filter_masks(annotations): # filter the overlap mask annotations.sort(key=lambda x: x["area"], reverse=True) to_remove = set() for i in range(0, len(annotations)): a = annotations[i] for j in range(i + 1, len(annotations)): b = annotations[j] if i != j and j not in to_remove: # check if if b["area"] < a["area"]: if (a["segmentation"] & b["segmentation"]).sum() / b[ "segmentation" ].sum() > 0.8: to_remove.add(j) return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove def get_bbox_from_mask(mask): mask = mask.astype(np.uint8) contours, hierarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) x1, y1, w, h = cv2.boundingRect(contours[0]) x2, y2 = x1 + w, y1 + h if len(contours) > 1: for b in contours: x_t, y_t, w_t, h_t = cv2.boundingRect(b) # 将多个bbox合并成一个 x1 = min(x1, x_t) y1 = min(y1, y_t) x2 = max(x2, x_t + w_t) y2 = max(y2, y_t + h_t) h = y2 - y1 w = x2 - x1 return [x1, y1, x2, y2] def fast_process( annotations, args, mask_random_color, bbox=None, points=None, edges=False ): if isinstance(annotations[0], dict): annotations = [annotation["segmentation"] for annotation in annotations] result_name = os.path.basename(args.img_path) image = cv2.imread(args.img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) original_h = image.shape[0] original_w = image.shape[1] if sys.platform == "darwin": plt.switch_backend("TkAgg") plt.figure(figsize=(original_w/100, original_h/100)) # Add subplot with no margin. plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(image) if args.better_quality == True: if isinstance(annotations[0], torch.Tensor): annotations = np.array(annotations.cpu()) for i, mask in enumerate(annotations): mask = cv2.morphologyEx( mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8) ) annotations[i] = cv2.morphologyEx( mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8) ) if args.device == "cpu": annotations = np.array(annotations) fast_show_mask( annotations, plt.gca(), random_color=mask_random_color, bbox=bbox, points=points, point_label=args.point_label, retinamask=args.retina, target_height=original_h, target_width=original_w, ) else: if isinstance(annotations[0], np.ndarray): annotations = torch.from_numpy(annotations) fast_show_mask_gpu( annotations, plt.gca(), random_color=args.randomcolor, bbox=bbox, points=points, point_label=args.point_label, retinamask=args.retina, target_height=original_h, target_width=original_w, ) if isinstance(annotations, torch.Tensor): annotations = annotations.cpu().numpy() if args.withContours == True: contour_all = [] temp = np.zeros((original_h, original_w, 1)) for i, mask in enumerate(annotations): if type(mask) == dict: mask = mask["segmentation"] annotation = mask.astype(np.uint8) if args.retina == False: annotation = cv2.resize( annotation, (original_w, original_h), interpolation=cv2.INTER_NEAREST, ) contours, hierarchy = cv2.findContours( annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) for contour in contours: contour_all.append(contour) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8]) contour_mask = temp / 255 * color.reshape(1, 1, -1) plt.imshow(contour_mask) save_path = args.output if not os.path.exists(save_path): os.makedirs(save_path) plt.axis("off") fig = plt.gcf() plt.draw() try: buf = fig.canvas.tostring_rgb() except AttributeError: fig.canvas.draw() buf = fig.canvas.tostring_rgb() cols, rows = fig.canvas.get_width_height() img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3) cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)) # CPU post process def fast_show_mask( annotation, ax, random_color=False, bbox=None, points=None, point_label=None, retinamask=True, target_height=960, target_width=960, ): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] # 将annotation 按照面积 排序 areas = np.sum(annotation, axis=(1, 2)) sorted_indices = np.argsort(areas) annotation = annotation[sorted_indices] index = (annotation != 0).argmax(axis=0) if random_color == True: color = np.random.random((msak_sum, 1, 1, 3)) else: color = np.ones((msak_sum, 1, 1, 3)) * np.array( [30 / 255, 144 / 255, 255 / 255] ) transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 visual = np.concatenate([color, transparency], axis=-1) mask_image = np.expand_dims(annotation, -1) * visual show = np.zeros((height, weight, 4)) h_indices, w_indices = np.meshgrid( np.arange(height), np.arange(weight), indexing="ij" ) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 show[h_indices, w_indices, :] = mask_image[indices] if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch( plt.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 ) ) # draw point if points is not None: plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 1], [point[1] for i, point in enumerate(points) if point_label[i] == 1], s=20, c="y", ) plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 0], [point[1] for i, point in enumerate(points) if point_label[i] == 0], s=20, c="m", ) if retinamask == False: show = cv2.resize( show, (target_width, target_height), interpolation=cv2.INTER_NEAREST ) ax.imshow(show) def fast_show_mask_gpu( annotation, ax, random_color=False, bbox=None, points=None, point_label=None, retinamask=True, target_height=960, target_width=960, ): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] areas = torch.sum(annotation, dim=(1, 2)) sorted_indices = torch.argsort(areas, descending=False) annotation = annotation[sorted_indices] # 找每个位置第一个非零值下标 index = (annotation != 0).to(torch.long).argmax(dim=0) if random_color == True: color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device) else: color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor( [30 / 255, 144 / 255, 255 / 255] ).to(annotation.device) transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6 visual = torch.cat([color, transparency], dim=-1) mask_image = torch.unsqueeze(annotation, -1) * visual # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 show = torch.zeros((height, weight, 4)).to(annotation.device) h_indices, w_indices = torch.meshgrid( torch.arange(height), torch.arange(weight), indexing="ij" ) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 show[h_indices, w_indices, :] = mask_image[indices] show_cpu = show.cpu().numpy() if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch( plt.Rectangle( (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 ) ) # draw point if points is not None: plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 1], [point[1] for i, point in enumerate(points) if point_label[i] == 1], s=20, c="y", ) plt.scatter( [point[0] for i, point in enumerate(points) if point_label[i] == 0], [point[1] for i, point in enumerate(points) if point_label[i] == 0], s=20, c="m", ) if retinamask == False: show_cpu = cv2.resize( show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST ) ax.imshow(show_cpu) # clip @torch.no_grad() def retriev( model, preprocess, elements, search_text: str, device ) -> int: preprocessed_images = [preprocess(image).to(device) for image in elements] tokenized_text = clip.tokenize([search_text]).to(device) stacked_images = torch.stack(preprocessed_images) image_features = model.encode_image(stacked_images) text_features = model.encode_text(tokenized_text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) probs = 100.0 * image_features @ text_features.T return probs[:, 0].softmax(dim=0) def crop_image(annotations, image_like): if isinstance(image_like, str): image = Image.open(image_like) else: image = image_like ori_w, ori_h = image.size mask_h, mask_w = annotations[0]["segmentation"].shape if ori_w != mask_w or ori_h != mask_h: image = image.resize((mask_w, mask_h)) cropped_boxes = [] cropped_images = [] not_crop = [] filter_id = [] # annotations, _ = filter_masks(annotations) # filter_id = list(_) for _, mask in enumerate(annotations): if np.sum(mask["segmentation"]) <= 100: filter_id.append(_) continue bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片 # cropped_boxes.append(segment_image(image,mask["segmentation"])) cropped_images.append(bbox) # 保存裁剪的图片的bbox return cropped_boxes, cropped_images, not_crop, filter_id, annotations def box_prompt(masks, bbox, target_height, target_width): h = masks.shape[1] w = masks.shape[2] if h != target_height or w != target_width: bbox = [ int(bbox[0] * w / target_width), int(bbox[1] * h / target_height), int(bbox[2] * w / target_width), int(bbox[3] * h / target_height), ] bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0 bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0 bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h # IoUs = torch.zeros(len(masks), dtype=torch.float32) bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) orig_masks_area = torch.sum(masks, dim=(1, 2)) union = bbox_area + orig_masks_area - masks_area IoUs = masks_area / union max_iou_index = torch.argmax(IoUs) return masks[max_iou_index].cpu().numpy(), max_iou_index def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理 h = masks[0]["segmentation"].shape[0] w = masks[0]["segmentation"].shape[1] if h != target_height or w != target_width: points = [ [int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points ] onemask = np.zeros((h, w)) masks = sorted(masks, key=lambda x: x['area'], reverse=True) for i, annotation in enumerate(masks): if type(annotation) == dict: mask = annotation['segmentation'] else: mask = annotation for i, point in enumerate(points): if mask[point[1], point[0]] == 1 and point_label[i] == 1: onemask[mask] = 1 if mask[point[1], point[0]] == 1 and point_label[i] == 0: onemask[mask] = 0 onemask = onemask >= 1 return onemask, 0 def text_prompt(annotations, text, img_path, device): cropped_boxes, cropped_images, not_crop, filter_id, annotations_ = crop_image( annotations, img_path ) clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device) scores = retriev( clip_model, preprocess, cropped_boxes, text, device=device ) max_idx = scores.argsort() max_idx = max_idx[-1] max_idx += sum(np.array(filter_id) <= int(max_idx)) return annotations_[max_idx]["segmentation"], max_idx