test2 / sgmse /sampling /__init__.py
Shokoufehhh's picture
Upload 49 files
b3a65d4 verified
raw
history blame
11 kB
# Adapted from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sampling.py
"""Various sampling methods."""
from scipy import integrate
import torch
from .predictors import Predictor, PredictorRegistry, ReverseDiffusionPredictor
from .correctors import Corrector, CorrectorRegistry
__all__ = [
'PredictorRegistry', 'CorrectorRegistry', 'Predictor', 'Corrector',
'get_sampler'
]
def to_flattened_numpy(x):
"""Flatten a torch tensor `x` and convert it to numpy."""
return x.detach().cpu().numpy().reshape((-1,))
def from_flattened_numpy(x, shape):
"""Form a torch tensor with the given `shape` from a flattened numpy array `x`."""
return torch.from_numpy(x.reshape(shape))
def get_pc_sampler(
predictor_name, corrector_name, sde, score_fn, y,
denoise=True, eps=3e-2, snr=0.1, corrector_steps=1, probability_flow: bool = False,
intermediate=False, **kwargs
):
"""Create a Predictor-Corrector (PC) sampler.
Args:
predictor_name: The name of a registered `sampling.Predictor`.
corrector_name: The name of a registered `sampling.Corrector`.
sde: An `sdes.SDE` object representing the forward SDE.
score_fn: A function (typically learned model) that predicts the score.
y: A `torch.Tensor`, representing the (non-white-)noisy starting point(s) to condition the prior on.
denoise: If `True`, add one-step denoising to the final samples.
eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues.
snr: The SNR to use for the corrector. 0.1 by default, and ignored for `NoneCorrector`.
N: The number of reverse sampling steps. If `None`, uses the SDE's `N` property by default.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
predictor_cls = PredictorRegistry.get_by_name(predictor_name)
corrector_cls = CorrectorRegistry.get_by_name(corrector_name)
predictor = predictor_cls(sde, score_fn, probability_flow=probability_flow)
corrector = corrector_cls(sde, score_fn, snr=snr, n_steps=corrector_steps)
def pc_sampler():
"""The PC sampler function."""
with torch.no_grad():
xt = sde.prior_sampling(y.shape, y).to(y.device)
timesteps = torch.linspace(sde.T, eps, sde.N, device=y.device)
for i in range(sde.N):
t = timesteps[i]
if i != len(timesteps) - 1:
stepsize = t - timesteps[i+1]
else:
stepsize = timesteps[-1] # from eps to 0
vec_t = torch.ones(y.shape[0], device=y.device) * t
xt, xt_mean = corrector.update_fn(xt, y, vec_t)
xt, xt_mean = predictor.update_fn(xt, y, vec_t, stepsize)
x_result = xt_mean if denoise else xt
ns = sde.N * (corrector.n_steps + 1)
return x_result, ns
return pc_sampler
def get_ode_sampler(
sde, score_fn, y, inverse_scaler=None,
denoise=True, rtol=1e-5, atol=1e-5,
method='RK45', eps=3e-2, device='cuda', **kwargs
):
"""Probability flow ODE sampler with the black-box ODE solver.
Args:
sde: An `sdes.SDE` object representing the forward SDE.
score_fn: A function (typically learned model) that predicts the score.
y: A `torch.Tensor`, representing the (non-white-)noisy starting point(s) to condition the prior on.
inverse_scaler: The inverse data normalizer.
denoise: If `True`, add one-step denoising to final samples.
rtol: A `float` number. The relative tolerance level of the ODE solver.
atol: A `float` number. The absolute tolerance level of the ODE solver.
method: A `str`. The algorithm used for the black-box ODE solver.
See the documentation of `scipy.integrate.solve_ivp`.
eps: A `float` number. The reverse-time SDE/ODE will be integrated to `eps` for numerical stability.
device: PyTorch device.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
predictor = ReverseDiffusionPredictor(sde, score_fn, probability_flow=False)
rsde = sde.reverse(score_fn, probability_flow=True)
def denoise_update_fn(x):
vec_eps = torch.ones(x.shape[0], device=x.device) * eps
_, x = predictor.update_fn(x, y, vec_eps)
return x
def drift_fn(x, y, t):
"""Get the drift function of the reverse-time SDE."""
return rsde.sde(x, y, t)[0]
def ode_sampler(z=None, **kwargs):
"""The probability flow ODE sampler with black-box ODE solver.
Args:
model: A score model.
z: If present, generate samples from latent code `z`.
Returns:
samples, number of function evaluations.
"""
with torch.no_grad():
# If not represent, sample the latent code from the prior distibution of the SDE.
x = sde.prior_sampling(y.shape, y).to(device)
def ode_func(t, x):
x = from_flattened_numpy(x, y.shape).to(device).type(torch.complex64)
vec_t = torch.ones(y.shape[0], device=x.device) * t
drift = drift_fn(x, y, vec_t)
return to_flattened_numpy(drift)
# Black-box ODE solver for the probability flow ODE
solution = integrate.solve_ivp(
ode_func, (sde.T, eps), to_flattened_numpy(x),
rtol=rtol, atol=atol, method=method, **kwargs
)
nfe = solution.nfev
x = torch.tensor(solution.y[:, -1]).reshape(y.shape).to(device).type(torch.complex64)
# Denoising is equivalent to running one predictor step without adding noise
if denoise:
x = denoise_update_fn(x)
if inverse_scaler is not None:
x = inverse_scaler(x)
return x, nfe
return ode_sampler
def get_sb_sampler(sde, model, y, eps=1e-4, n_steps=50, sampler_type="ode", **kwargs):
# adapted from https://github.com/NVIDIA/NeMo/blob/78357ae99ff2cf9f179f53fbcb02c88a5a67defb/nemo/collections/audio/parts/submodules/schroedinger_bridge.py#L382
def sde_sampler():
"""The SB-SDE sampler function."""
with torch.no_grad():
xt = y[:, [0], :, :] # special case for storm_2ch
time_steps = torch.linspace(sde.T, eps, sde.N + 1, device=y.device)
# Initial values
time_prev = time_steps[0] * torch.ones(xt.shape[0], device=xt.device)
sigma_prev, sigma_T, sigma_bar_prev, alpha_prev, alpha_T, alpha_bar_prev = sde._sigmas_alphas(time_prev)
for t in time_steps[1:]:
# Prepare time steps for the whole batch
time = t * torch.ones(xt.shape[0], device=xt.device)
# Get noise schedule for current time
sigma_t, sigma_T, sigma_bart, alpha_t, alpha_T, alpha_bart = sde._sigmas_alphas(time)
# Run DNN
current_estimate = model(xt, y, time)
# Calculate scaling for the first-order discretization from the paper
weight_prev = alpha_t * sigma_t**2 / (alpha_prev * sigma_prev**2 + sde.eps)
tmp = 1 - sigma_t**2 / (sigma_prev**2 + sde.eps)
weight_estimate = alpha_t * tmp
weight_z = alpha_t * sigma_t * torch.sqrt(tmp)
# View as [B, C, D, T]
weight_prev = weight_prev[:, None, None, None]
weight_estimate = weight_estimate[:, None, None, None]
weight_z = weight_z[:, None, None, None]
# Random sample
z_norm = torch.randn_like(xt)
if t == time_steps[-1]:
weight_z = 0.0
# Update state: weighted sum of previous state, current estimate and noise
xt = weight_prev * xt + weight_estimate * current_estimate + weight_z * z_norm
# Save previous values
time_prev = time
alpha_prev = alpha_t
sigma_prev = sigma_t
sigma_bar_prev = sigma_bart
return xt, n_steps
def ode_sampler():
"""The SB-ODE sampler function."""
with torch.no_grad():
xt = y
time_steps = torch.linspace(sde.T, eps, sde.N + 1, device=y.device)
# Initial values
time_prev = time_steps[0] * torch.ones(xt.shape[0], device=xt.device)
sigma_prev, sigma_T, sigma_bar_prev, alpha_prev, alpha_T, alpha_bar_prev = sde._sigmas_alphas(time_prev)
for t in time_steps[1:]:
# Prepare time steps for the whole batch
time = t * torch.ones(xt.shape[0], device=xt.device)
# Get noise schedule for current time
sigma_t, sigma_T, sigma_bart, alpha_t, alpha_T, alpha_bart = sde._sigmas_alphas(time)
# Run DNN
current_estimate = model(xt, y, time)
# Calculate scaling for the first-order discretization from the paper
weight_prev = alpha_t * sigma_t * sigma_bart / (alpha_prev * sigma_prev * sigma_bar_prev + sde.eps)
weight_estimate = (
alpha_t
/ (sigma_T**2 + sde.eps)
* (sigma_bart**2 - sigma_bar_prev * sigma_t * sigma_bart / (sigma_prev + sde.eps))
)
weight_prior_mean = (
alpha_t
/ (alpha_T * sigma_T**2 + sde.eps)
* (sigma_t**2 - sigma_prev * sigma_t * sigma_bart / (sigma_bar_prev + sde.eps))
)
# View as [B, C, D, T]
weight_prev = weight_prev[:, None, None, None]
weight_estimate = weight_estimate[:, None, None, None]
weight_prior_mean = weight_prior_mean[:, None, None, None]
# Update state: weighted sum of previous state, current estimate and prior
xt = weight_prev * xt + weight_estimate * current_estimate + weight_prior_mean * y
# Save previous values
time_prev = time
alpha_prev = alpha_t
sigma_prev = sigma_t
sigma_bar_prev = sigma_bart
return xt, n_steps
if sampler_type == "sde":
return sde_sampler
elif sampler_type == "ode":
return ode_sampler
else:
raise ValueError("Invalid type. Choose 'ode' or 'sde'.")